zoukankan      html  css  js  c++  java
  • 009-多线程-锁-JUC锁-Semaphore 信号量【控制一定数量的许可(permit)的方式,来达到限制通用资源访问的目的】

    一、概述

      Semaphore是一个计数信号量。从概念上将,Semaphore包含一组许可证。如果有需要的话,每个acquire()方法都会阻塞,直到获取一个可用的许可证。每个release()方法都会释放持有许可证的线程,并且归还Semaphore一个可用的许可证。然而,实际上并没有真实的许可证对象供线程使用,Semaphore只是对可用的数量进行管理维护。

      信号量机制是一种有限数量的共享模式锁。控制临界资源超出范围的一种手段。可用于流量控制,限制最大的并发访问数。

      Semaphore是通过共享锁实现的。根据共享锁的获取原则,Semaphore分为"公平信号量"和"非公平信号量"。

    1.1、使用场景

      Semaphore经常用于限制获取某种资源的线程数量。为何会有信号量?因为任何资源都是有上限的,如数据库访问数量,IO瓶颈、网络最大传输量等

    二、源码查看

      Semaphore也是基于AQS实现的,在其内部也是通过一个内部类Sync实现同步器AQS,同样也是通过实现Sync实现公平锁和非公平锁。 

      "公平信号量"和"非公平信号量"的释放信号量的机制是一样的!不同的是它们获取信号量的机制:线程在尝试获取信号量许可时,对于公平信号量而言,如果当前线程不在CLH队列的头部,则排队等候;而对于非公平信号量而言,无论当前线程是不是在CLH队列的头部,它都会直接获取信号量。该差异具体的体现在,它们的tryAcquireShared()函数的实现不同。

     2.1、使用

            Semaphore semaphore=new Semaphore(2);
            semaphore.acquire();
            semaphore.release();

    构造函数

        public Semaphore(int permits) {
            sync = new NonfairSync(permits);
        }
       public Semaphore(int permits, boolean fair) {
            sync = fair ? new FairSync(permits) : new NonfairSync(permits);
        }
    • permits 表示许可线程的数量
    • fair 表示公平性,如果这个设为 true 的话,下次执行的线程会是等待最久的线程

    自定义同步器构建的公平锁和非公平锁创建

    public class Semaphore implements java.io.Serializable {
        private static final long serialVersionUID = -3222578661600680210L;
        /** All mechanics via AbstractQueuedSynchronizer subclass */
        private final Sync sync;
    
        abstract static class Sync extends AbstractQueuedSynchronizer {}
        
        static final class NonfairSync extends Sync {}
    
        static final class FairSync extends Sync{}
    }

    查看Sync同步器的构造方法 

    Sync(int permits) {
                setState(permits);
            }

      可以看到同步器是在构造时必须传入permits,即信号量的许可证数

    2.2、公平信号量获取-acquire

    public void acquire() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }
     
    public void acquire(int permits) throws InterruptedException {
        if (permits < 0) throw new IllegalArgumentException();
        sync.acquireSharedInterruptibly(permits);
    }

    信号量中的acquire()获取函数,实际上是调用的AQS中的acquireSharedInterruptibly()。

    查看acquireSharedInterruptibly内部实现

    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        // 如果线程是中断状态,则抛出异常。
        if (Thread.interrupted())
            throw new InterruptedException();
        // 否则,尝试获取“共享锁”;获取成功则直接返回,获取失败,则通过doAcquireSharedInterruptibly()获取。
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

    tryAcquireShared模板方法在自定义同步器中实现,Semaphore中”公平锁“对应的tryAcquireShared()实现如下:

    protected int tryAcquireShared(int acquires) {
        for (;;) {
            // 判断“当前线程”是不是CLH队列中的第一个线程线程,
            // 若是的话,则返回-1。
            if (hasQueuedPredecessors())
                return -1;
            // 设置“可以获得的信号量的许可数”
            int available = getState();
            // 设置“获得acquires个信号量许可之后,剩余的信号量许可数”
            int remaining = available - acquires;
            // 如果“剩余的信号量许可数>=0”,则设置“可以获得的信号量许可数”为remaining。
            if (remaining < 0 ||
                compareAndSetState(available, remaining))
                return remaining;
        }
    }

    说明:tryAcquireShared()的作用是尝试获取acquires个信号量许可数。
    对于Semaphore而言,state表示的是“当前可获得的信号量许可数”。

    下面看看AQS中doAcquireSharedInterruptibly()的实现:

    private void doAcquireSharedInterruptibly(long arg)
        throws InterruptedException {
        // 创建”当前线程“的Node节点,且Node中记录的锁是”共享锁“类型;并将该节点添加到CLH队列末尾。
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                // 获取上一个节点。
                // 如果上一节点是CLH队列的表头,则”尝试获取共享锁“。
                final Node p = node.predecessor();
                if (p == head) {
                    long r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                // 当前线程一直等待,直到获取到共享锁。
                // 如果线程在等待过程中被中断过,则再次中断该线程(还原之前的中断状态)。
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

    说明:doAcquireSharedInterruptibly()会使当前线程一直等待,直到当前线程获取到共享锁(或被中断)才返回。
    (01) addWaiter(Node.SHARED)的作用是,创建”当前线程“的Node节点,且Node中记录的锁的类型是”共享锁“(Node.SHARED);并将该节点添加到CLH队列末尾。
    (02) node.predecessor()的作用是,获取上一个节点。如果上一节点是CLH队列的表头,则”尝试获取共享锁“。
    (03) shouldParkAfterFailedAcquire()的作用和它的名称一样,如果在尝试获取锁失败之后,线程应该等待,则返回true;否则,返回false。
    (04) 当shouldParkAfterFailedAcquire()返回ture时,则调用parkAndCheckInterrupt(),当前线程会进入等待状态,直到获取到共享锁才继续运行。

    2.3、公平信号量释放-release

    Semaphore中公平信号量(FairSync)的释放API如下:

    public void release() {
        sync.releaseShared(1);
    }
     
    public void release(int permits) {
        if (permits < 0) throw new IllegalArgumentException();
        sync.releaseShared(permits);
    }

    信号量的releases()释放函数,实际上是调用的AQS中的releaseShared()。

    releaseShared()在AQS中实现,源码如下:

    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }

    说明:releaseShared()的目的是让当前线程释放它所持有的共享锁。
    它首先会通过tryReleaseShared()去尝试释放共享锁。尝试成功,则直接返回;尝试失败,则通过doReleaseShared()去释放共享锁。

    Semaphore重写了tryReleaseShared(),它的源码如下:

    protected final boolean tryReleaseShared(int releases) {
        for (;;) {
            // 获取“可以获得的信号量的许可数”
            int current = getState();
            // 获取“释放releases个信号量许可之后,剩余的信号量许可数”
            int next = current + releases;
            if (next < current) // overflow
                throw new Error("Maximum permit count exceeded");
            // 设置“可以获得的信号量的许可数”为next。
            if (compareAndSetState(current, next))
                return true;
        }
    }

    如果tryReleaseShared()尝试释放共享锁失败,则会调用doReleaseShared()去释放共享锁。doReleaseShared()的源码如下:

    private void doReleaseShared() {
        for (;;) {
            // 获取CLH队列的头节点
            Node h = head;
            // 如果头节点不为null,并且头节点不等于tail节点。
            if (h != null && h != tail) {
                // 获取头节点对应的线程的状态
                int ws = h.waitStatus;
                // 如果头节点对应的线程是SIGNAL状态,则意味着“头节点的下一个节点所对应的线程”需要被unpark唤醒。
                if (ws == Node.SIGNAL) {
                    // 设置“头节点对应的线程状态”为空状态。失败的话,则继续循环。
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;
                    // 唤醒“头节点的下一个节点所对应的线程”。
                    unparkSuccessor(h);
                }
                // 如果头节点对应的线程是空状态,则设置“文件点对应的线程所拥有的共享锁”为其它线程获取锁的空状态。
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            // 如果头节点发生变化,则继续循环。否则,退出循环。
            if (h == head)                   // loop if head changed
                break;
        }
    }

    说明:doReleaseShared()会释放“共享锁”。它会从前往后的遍历CLH队列,依次“唤醒”然后“执行”队列中每个节点对应的线程;最终的目的是让这些线程释放它们所持有的信号量。

    2.4、非公平信号量获取和释放

    Semaphore中的非公平信号量是NonFairSync。在Semaphore中,“非公平信号量许可的释放(release)”与“公平信号量许可的释放(release)”是一样的。
    不同的是它们获取“信号量许可”的机制不同,下面是非公平信号量获取信号量许可的代码。

    非公平信号量的tryAcquireShared()实现如下:

    protected int tryAcquireShared(int acquires) {
        return nonfairTryAcquireShared(acquires);
    }

    nonfairTryAcquireShared()的实现如下:

    final int nonfairTryAcquireShared(int acquires) {
        for (;;) {
            // 设置“可以获得的信号量的许可数”
            int available = getState();
            // 设置“获得acquires个信号量许可之后,剩余的信号量许可数”
            int remaining = available - acquires;
            // 如果“剩余的信号量许可数>=0”,则设置“可以获得的信号量许可数”为remaining。
            if (remaining < 0 ||
                compareAndSetState(available, remaining))
                return remaining;
        }
    }

    说明:非公平信号量的tryAcquireShared()调用AQS中的nonfairTryAcquireShared()。而在nonfairTryAcquireShared()的for循环中,它都会直接判断“当前剩余的信号量许可数”是否足够;足够的话,则直接“设置可以获得的信号量许可数”,进而再获取信号量。
    而公平信号量的tryAcquireShared()中,在获取信号量之前会通过if (hasQueuedPredecessors())来判断“当前线程是不是在CLH队列的头部”,是的话,则返回-1。

    三、示例

    public class SemaphoreTest {
        // 自定义工作线程
        private static class Worker extends Thread {
            private CountDownLatch countDownLatch;
            private Semaphore semaphore;
    
            public Worker(CountDownLatch countDownLatch, Semaphore semaphore) {
                this.countDownLatch = countDownLatch;
                this.semaphore = semaphore;
            }
    
            @Override
            public void run() {
                super.run();
    
                boolean hasAcquire = false;
                try {
                    countDownLatch.await();
                    semaphore.acquire();
                    hasAcquire = true;
                    System.out.println(Thread.currentThread().getName() + "开始执行");
                    // 工作线程开始处理,这里用Thread.sleep()来模拟业务处理
                    Thread.sleep(1000);
                    System.out.println(Thread.currentThread().getName() + "执行完毕");
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    if (hasAcquire) {
                        semaphore.release();
                    }
                }
            }
        }
    
        public static void main(String[] args) {
            int threadCount = 10;
            int permitCount = 3;
    
            CountDownLatch countDownLatch = new CountDownLatch(1);
            Semaphore semaphore = new Semaphore(permitCount);
    
            for (int i = 0; i < threadCount; i++) {
                Worker worker = new Worker(countDownLatch, semaphore);
                worker.start();
            }
    
            countDownLatch.countDown();
        }
    }

    输出

    Thread-1开始执行
    Thread-0开始执行
    Thread-9开始执行
    Thread-1执行完毕
    Thread-2开始执行
    Thread-9执行完毕
    Thread-0执行完毕
    Thread-3开始执行
    Thread-4开始执行
    Thread-2执行完毕
    Thread-3执行完毕
    Thread-4执行完毕
    Thread-6开始执行
    Thread-5开始执行
    Thread-7开始执行
    Thread-6执行完毕
    Thread-7执行完毕
    Thread-5执行完毕
    Thread-8开始执行
    Thread-8执行完毕

    Semaphore有3个许可,但是有10个线程要执行,从执行结果中可以看出,每次都是3个线程一组开始执行,也就是每次只能有3个线程获取许可。

    参看地址:

      http://www.cnblogs.com/skywang12345/p/3534050.html

  • 相关阅读:
    PHP Framework
    PHP Framework
    PHP Framework
    PHP Framework
    Coursera:一流大学免费在线课程平台
    在线编译器Coding Ground
    朱子家训
    [转]3天搞定的小型B/S内部管理类软件定制开发项目【软件开发实战10步骤详解】
    [转]Android 如何监听返回键,弹出一个退出对话框
    [转]Android 完美退出 App (Exit)
  • 原文地址:https://www.cnblogs.com/bjlhx/p/10602573.html
Copyright © 2011-2022 走看看