zoukankan      html  css  js  c++  java
  • HDU 4288 Coder

    Coder

    Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2778    Accepted Submission(s): 1104


    Problem Description
      In mathematics and computer science, an algorithm describes a set of procedures or instructions that define a procedure. The term has become increasing popular since the advent of cheap and reliable computers. Many companies now employ a single coder to write an algorithm that will replace many other employees. An added benefit to the employer is that the coder will also become redundant once their work is done. 1
      You are now the signle coder, and have been assigned a new task writing code, since your boss would like to replace many other employees (and you when you become redundant once your task is complete).
    Your code should be able to complete a task to replace these employees who do nothing all day but eating: make the digest sum.
      By saying “digest sum” we study some properties of data. For the sake of simplicity, our data is a set of integers. Your code should give response to following operations:
      1. add x – add the element x to the set;
      2. del x – remove the element x from the set;
      3. sum – find the digest sum of the set. The digest sum should be understood by

      where the set S is written as {a1, a2, ... , ak} satisfying a1 < a2 < a3 < ... < ak 
      Can you complete this task (and be then fired)?
    ------------------------------------------------------------------------------
    1 See http://uncyclopedia.wikia.com/wiki/Algorithm
     

    Input
      There’re several test cases.
      In each test case, the first line contains one integer N ( 1 <= N <= 105 ), the number of operations to process.
      Then following is n lines, each one containing one of three operations: “add x” or “del x” or “sum”.
      You may assume that 1 <= x <= 109.
      Please see the sample for detailed format.
      For any “add x” it is guaranteed that x is not currently in the set just before this operation.
      For any “del x” it is guaranteed that x must currently be in the set just before this operation.
      Please process until EOF (End Of File).
     

    Output
      For each operation “sum” please print one line containing exactly one integer denoting the digest sum of the current set. Print 0 if the set is empty.
     

    Sample Input
    9 add 1 add 2 add 3 add 4 add 5 sum add 6 del 3 sum 6 add 1 add 3 add 5 add 7 add 9 sum
     

    Sample Output
    3 4 5
    Hint
    C++ maybe run faster than G++ in this problem.
    解题思路:建5棵线段树。分别保存区间内相对顺序模5的位置的数字之和。pushup的时候左子树的相对父节点位置不变。右子树的相对位置为((i-tree[[rt<<1].cnt])%5+5)%5,cnt是区间内的数的个数,最后结果是tree[1].sum[3]
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <string>
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define Maxn 100005
    #define LL long long 
    using namespace std;
    struct
    {
    	int cnt;
    	LL sum[5];
    }tree[Maxn<<2];
    void push_up(int rt)
    {
    	for(int i=0;i<5;i++)
    		tree[rt].sum[i]=tree[rt<<1].sum[i]+tree[rt<<1|1].sum[((i-tree[rt<<1].cnt)%5+5)%5];
    }
    void build(int l,int r,int rt)
    {
    	tree[rt].cnt=0;
    	memset(tree[rt].sum,0,sizeof(tree[rt].sum));
    	if(l==r)
    	    return ;
    	int m=(l+r)>>1;
    	build(lson);
    	build(rson);
    	push_up(rt);
    }
    void update(int pos,int x,int k,int l,int r,int rt)
    {
    	tree[rt].cnt+=k;
    	if(l==r)
    	{
    		tree[rt].sum[1]+=k*x;
    		return ;
    	}
    	int m=(l+r)>>1;
    	if(pos<=m)
    		update(pos,x,k,lson);
    	else
    		update(pos,x,k,rson);
    	push_up(rt);
    }
    int main()
    {
    	char op[Maxn][5];
    	int x[Maxn],n,num[Maxn],j,p;
    	freopen("in.txt","r",stdin);
    	freopen("out.txt","w",stdout);
    	while(~scanf("%d",&n))
    	{
    		j=0;
    		for(int i=0;i<n;i++)
    		{
    			scanf("%s",op[i]);
    			if(op[i][0]!='s')
    			{
    				scanf("%d",&x[i]);
    				if(op[i][0]=='a')
    					num[j++]=x[i];
    			}
    		}
    		sort(num,num+j);
    		if(j==0)
    			memset(tree[1].sum,0,sizeof(tree[1].sum));
    		else
    			build(1,j,1);
    		for(int i=0;i<n;i++)
    		{
    			switch(op[i][0])
    			{
    				case 'a':
    					p=lower_bound(num,num+j,x[i])-num+1;
    					update(p,x[i],1,1,j,1);
    					break;
    				case 'd':
    					p=lower_bound(num,num+j,x[i])-num+1;
    					update(p,x[i],-1,1,j,1);
    					break;
    				case 's':
    					printf("%I64d
    ",tree[1].sum[3]);
    					break;
    			}
    		}
    	}
    	return 0;
    }


     

    Source
     

  • 相关阅读:
    Blender 2.8 [学习笔记-001] 基本设置
    Blender 2.8 [学习笔记] 编辑模式下显示边长、面积等信息
    第十八章节 BJROBOT 安卓手机 APP 建地图【ROS全开源阿克曼转向智能网联无人驾驶车】
    第十七章节 BJROBOT opencv_apps 图像处理示例【ROS全开源阿克曼转向智能网联无人驾驶车】
    第十六章节 BJROBOT 开机自启动服务【ROS全开源阿克曼转向智能网联无人驾驶车】
    第十五章节 BJROBOT cartographer 算法构建地图【ROS全开源阿克曼转向智能网联无人驾驶车】
    第14章节 BJROBOT karto 算法构建地图【ROS全开源阿克曼转向智能网联无人驾驶车】
    第13章节 BJROBOT 雷达跟随【ROS全开源阿克曼转向智能网联无人驾驶车】
    第十二章节 BJROBOT 摄像头寻线 【ROS全开源阿克曼转向智能网联无人驾驶车】
    第十章节 BJROBOT PID 动态调节【ROS全开源阿克曼转向智能网联无人驾驶车】
  • 原文地址:https://www.cnblogs.com/blfshiye/p/5406782.html
Copyright © 2011-2022 走看看