3DES加密解密
3DES又称Triple DES,是DES加密算法的一种模式,它使用3条56位的密钥对数据进行三次加密。数据加密标准(DES)是美国的一种由来已久的加密标准,它使用对称密钥加密法,并于1981年被ANSI组织规范为ANSI X.3.92。DES使用56位密钥和密码块的方法,而在密码块的方法中,文本被分成64位大小的文本块然后再进行加密。比起最初的DES,3DES更为安全。 3DES(即Triple DES)是DES向AES过渡的加密算法(1999年,NIST将3-DES指定为过渡的加密标准),是DES的一个更安全的变形。它以DES为基本模块,通过组合分组方法设计出分组加密算法,其具体实现如下:设Ek()和Dk()代表DES算法的加密和解密过程,K代表DES算法使用的密钥,P代表明文,C代表密表,这样, 3DES加密过程为:C=Ek3(Dk2(Ek1(P))) 3DES解密过程为:P=Dk1((EK2(Dk3(C))) 具体的加/解密过程如图所示。 using System; using System.Text; using System.IO; using System.Security.Cryptography; class Class1 { static void Main() { Console.WriteLine("Encrypt String..."); txtKey = "tkGGRmBErvc="; btnKeyGen(); Console.WriteLine("Encrypt Key :{0}", txtKey); txtIV = "Kl7ZgtM1dvQ="; btnIVGen(); Console.WriteLine("Encrypt IV :{0}", txtIV); Console.WriteLine(); string txtEncrypted = EncryptString("1111"); Console.WriteLine("Encrypt String : {0}", txtEncrypted); string txtOriginal = DecryptString(txtEncrypted); Console.WriteLine("Decrypt String : {0}", txtOriginal); Console.ReadLine(); } private static SymmetricAlgorithm mCSP; private static string txtKey; private static string txtIV; private static void btnKeyGen() { mCSP = SetEnc(); byte[] byt2 = Convert.FromBase64String(txtKey); mCSP.Key = byt2; } private static void btnIVGen() { byte[] byt2 = Convert.FromBase64String(txtIV); mCSP.IV = byt2; } private static string EncryptString(string Value) { ICryptoTransform ct; MemoryStream ms; CryptoStream cs; byte[] byt; ct = mCSP.CreateEncryptor(mCSP.Key, mCSP.IV); byt = Encoding.UTF8.GetBytes(Value); ms = new MemoryStream(); cs = new CryptoStream(ms, ct, CryptoStreamMode.Write); cs.Write(byt, 0, byt.Length); cs.FlushFinalBlock(); cs.Close(); return Convert.ToBase64String(ms.ToArray()); } private static string DecryptString(string Value) { ICryptoTransform ct; MemoryStream ms; CryptoStream cs; byte[] byt; ct = mCSP.CreateDecryptor(mCSP.Key, mCSP.IV); byt = Convert.FromBase64String(Value); ms = new MemoryStream(); cs = new CryptoStream(ms, ct, CryptoStreamMode.Write); cs.Write(byt, 0, byt.Length); cs.FlushFinalBlock(); cs.Close(); return Encoding.UTF8.GetString(ms.ToArray()); } private static SymmetricAlgorithm SetEnc() { return new DESCryptoServiceProvider(); } } // 输出结果: // ----------------------------------- // Encrypt String... // Encrypt Key :tkGGRmBErvc= // Encrypt IV :Kl7ZgtM1dvQ= // Encrypt String : 0Z5oJxsrU5Q= // Decrypt String : 1111 K1、K2、K3决定了算法的安全性,若三个密钥互不相同,本质上就相当于用一个长为168位的密钥进行加密。多年来,它在对付强力攻击时是比较安全的。若数据对安全性要求不那么高,K1可以等于K3。在这种情况下,密钥的有效长度为112位。 个性签名:做要做好,做到不三不四不如不做。
MD5 加密的具体流程
1.来历 MD5的全称是message-digest algorithm 5(信息-摘要算法,在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest开发出来,经md2、md3和md4发展而来。http://www.ietf.org/rfc/rfc1321.txt,是一份最权威的文档,由ronald l. rivest在1992年8月向ieft提交。 2.用途 MD5的作用是对一段信息(message)生成信息摘要(message-digest),该摘要对该信息具有唯一性,可以作为数字签名。用于验证文件的有效性(是否有丢失或损坏的数据),对用户密码的加密,在哈希函数中计算散列值。 3.特点 输入一个任意长度的字节串,生成一个128位的整数。由于算法的某些不可逆特征,在加密应用上有较好的安全性。并且,MD5算法的使用不需要支付任何版权费用。 4.说明 唯一性和不可逆性都不是绝对的,从理论上分析是一种多对一的关系,但两个不同的信息产生相同摘要的概率很小。不可逆是指从输出反推输入所需的运算量和计算时间太大,使用穷搜字典的方法又需要太多的存储空间。 5.算法描述 算法输入是一个字节串,每个字节是8个bit. 算法的执行分为以下几个步骤: 第一步,补位: MD5算法先对输入的数据进行补位,使得数据的长度(以byte为单位)对64求余的结果是56。即数据扩展至LEN=K*64+56个字节,K为整数。 补位方法:补一个1,然后补0至满足上述要求。相当于补一个0x80的字节,再补值为0的字节。这一步里总共补充的字节数为0~63个。 第二步,附加数据长度: 用一个64位的整数表示数据的原始长度(以bit为单位),将这个数字的8个字节按低位的在前,高位在后的顺序附加在补位后的数据后面。这时,数据被填补后的总长度为: LEN = K*64+56+8=(K+1)*64 Bytes。 ※注意那个64位整数是输入数据的原始长度而不是填充字节后的长度,我就在这里栽了跟头. 第三步,初始化MD5参数: 有四个32位整数变量 (A,B,C,D) 用来计算信息摘要,每一个变量被初始化成以下以十六进制数表示的数值,低位的字节在前面。 word A: 01 23 45 67 word B: 89 ab cd ef word C: fe dc ba 98 word D: 76 54 32 10 ※注意低位的字节在前面指的是Little Endian平台上内存中字节的排列方式,而在程序中书写时,要写成: A=0x67452301 B=0xefcdab89 C=0x98badcfe D=0x10325476 第四步,定义四个MD5基本的按位操作函数: X,Y,Z为32位整数。 F(X,Y,Z) = (X and Y) or (not(X) and Z) G(X,Y,Z) = (X and Z) or (Y and not(Z)) H(X,Y,Z) = X xor Y xor Z I(X,Y,Z) = Y xor (X or not(Z)) 再定义四个分别用于四轮变换的函数。 设Mj表示消息的第j个子分组(从0到15),<<<s表示循环左移s位,则四种操作为: FF(a,b,c,d,Mj,s,ti)表示a=b+((a+(F(b,c,d)+Mj+ti)<<<s) GG(a,b,c,d,Mj,s,ti)表示a=b+((a+(G(b,c,d)+Mj+ti)<<<s) HH(a,b,c,d,Mj,s,ti)表示a=b+((a+(H(b,c,d)+Mj+ti)<<<s) II(a,b,c,d,Mj,s,ti)表示a=b+((a+(I(b,c,d)+Mj+ti)<<<s) 第五步,对输入数据作变换。 处理数据,N是总的字节数,以64个字节为一组,每组作一次循环,每次循环进行四轮操作。要变换的64个字节用16个32位的整数数组M[0 ...15]表示。而数组T[1 ... 64]表示一组常数, T[i]为4294967296*abs(sin(i))的32位整数部分,i的单位是弧度,i的取值从1到64。 具体过程如下: /* 设置主循环变量 */ For i = 0 to N/16-1 do /*每循环一次,把数据原文存放在16个元素的数组X中. */ For j = 0 to 15 do Set X[j] to M[i*16+j]. end /结束对J的循环 /* Save A as AA, B as BB, C as CC, and D as DD. */ AA = A BB = B CC = C DD = D /* 第1轮*/ /* 以 [abcd k s i]表示如下操作 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */ /* Do the following 16 operations. */ [ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4] [ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8] [ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12] [ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16] /* 第2轮* */ /* 以 [abcd k s i]表示如下操作 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */ /* Do the following 16 operations. */ [ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA 0 20 20] [ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24] [ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28] [ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32] /* 第3轮*/ /* 以 [abcd k s i]表示如下操作 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */ /* Do the following 16 operations. */ [ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36] [ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40] [ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44] [ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48] /* 第4轮*/ /* 以 [abcd k s i]表示如下操作 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */ /* Do the following 16 operations. */ [ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52] [ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56] [ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60] [ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64] /* 然后进行如下操作 */ A = A + AA B = B + BB C = C + CC D = D + DD Next i /* 结束对I的循环*/ 第六步,输出结果。 A,B,C,D连续存放,共16个字节,128位。按十六进制依次输出这个16个字节。 最后,用程序语言实现算法后,可以输入以下几个信息对程序作一个简单的测试,看看程序有没有错误。 MD5 ("") = d41d8cd98f00b204e9800998ecf8427e MD5 ("a") = 0cc175b9c0f1b6a831c399e269772661 MD5 ("abc") = 900150983cd24fb0d6963f7d28e17f72 MD5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0 MD5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b MD5 ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789") = d174ab98d277d9f5a5611c2c9f419d9f MD5 ("12345678901234567890123456789012345678901234567890123456789012345678901234567890") = 57edf4a22be3c955ac49da2e2107b67a MD5算法之C#程序 MD5算法比较特别,最适合用汇编语言来写,好多高级语言对之无能无力或效率极低。比如我最开始尝试用Python和Euphoria编写,发现不太容易。相比而言,C#作为C家簇中新兴的一门.net语言,功能比较全面。花了一晚上的工夫终于用C#最先实现了MD5。主要是由于对算法的一些细节不太注意,结果输出总是不对,调试了好长时间。 //源文件:md5.cs // MD5 Alogrithm // by rufi 2004.6.20 http://rufi.yculblog.com/ using System; using System.Collections; using System.IO; public class MD5 { //static state variables private static UInt32 A; private static UInt32 B; private static UInt32 C; private static UInt32 D; //number of bits to rotate in tranforming private const int S11 = 7; private const int S12 = 12; private const int S13 = 17; private const int S14 = 22; private const int S21 = 5; private const int S22 = 9; private const int S23 = 14; private const int S24 = 20; private const int S31 = 4; private const int S32 = 11; private const int S33 = 16; private const int S34 = 23; private const int S41 = 6; private const int S42 = 10; private const int S43 = 15; private const int S44 = 21; /* F, G, H and I are basic MD5 functions. * 四个非线性函数: * * F(X,Y,Z) =(X&Y)|((~X)&Z) * G(X,Y,Z) =(X&Z)|(Y&(~Z)) * H(X,Y,Z) =X^Y^Z * I(X,Y,Z)=Y^(X|(~Z)) * * (&与,|或,~非,^异或) */ private static UInt32 F(UInt32 x, UInt32 y, UInt32 z) { return (x & y) | ((~x) & z); } private static UInt32 G(UInt32 x, UInt32 y, UInt32 z) { return (x & z) | (y & (~z)); } private static UInt32 H(UInt32 x, UInt32 y, UInt32 z) { return x ^ y ^ z; } private static UInt32 I(UInt32 x, UInt32 y, UInt32 z) { return y ^ (x | (~z)); } /* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. * Rotation is separate from addition to prevent recomputation. */ private static void FF(ref UInt32 a, UInt32 b, UInt32 c, UInt32 d, UInt32 mj, int s, UInt32 ti) { a = a + F(b, c, d) + mj + ti; a = a << s | a >> (32 - s); a += b; } private static void GG(ref UInt32 a, UInt32 b, UInt32 c, UInt32 d, UInt32 mj, int s, UInt32 ti) { a = a + G(b, c, d) + mj + ti; a = a << s | a >> (32 - s); a += b; } private static void HH(ref UInt32 a, UInt32 b, UInt32 c, UInt32 d, UInt32 mj, int s, UInt32 ti) { a = a + H(b, c, d) + mj + ti; a = a << s | a >> (32 - s); a += b; } private static void II(ref UInt32 a, UInt32 b, UInt32 c, UInt32 d, UInt32 mj, int s, UInt32 ti) { a = a + I(b, c, d) + mj + ti; a = a << s | a >> (32 - s); a += b; } private static void MD5_Init() { A = 0x67452301; //in memory, this is 0x01234567 B = 0xefcdab89; //in memory, this is 0x89abcdef C = 0x98badcfe; //in memory, this is 0xfedcba98 D = 0x10325476; //in memory, this is 0x76543210 } private static UInt32[] MD5_Append(byte[] input) { int zeros = 0; int ones = 1; int size = 0; int n = input.Length; int m = n % 64; if (m < 56) { zeros = 55 - m; size = n - m + 64; } else if (m == 56) { zeros = 0; ones = 0; size = n + 8; } else { zeros = 63 - m + 56; size = n + 64 - m + 64; } ArrayList bs = new ArrayList(input); if (ones == 1) { bs.Add((byte)0x80); // 0x80 = $10000000 } for (int i = 0; i < zeros; i++) { bs.Add((byte)0); } UInt64 N = (UInt64)n * 8; byte h1 = (byte)(N & 0xFF); byte h2 = (byte)((N >> 8) & 0xFF); byte h3 = (byte)((N >> 16) & 0xFF); byte h4 = (byte)((N >> 24) & 0xFF); byte h5 = (byte)((N >> 32) & 0xFF); byte h6 = (byte)((N >> 40) & 0xFF); byte h7 = (byte)((N >> 48) & 0xFF); byte h8 = (byte)(N >> 56); bs.Add(h1); bs.Add(h2); bs.Add(h3); bs.Add(h4); bs.Add(h5); bs.Add(h6); bs.Add(h7); bs.Add(h8); byte[] ts = (byte[])bs.ToArray(typeof(byte)); /* Decodes input (byte[]) into output (UInt32[]). Assumes len is * a multiple of 4. */ UInt32[] output = new UInt32[size / 4]; for (Int64 i = 0, j = 0; i < size; j++, i += 4) { output[j] = (UInt32)(ts[i] | ts[i + 1] << 8 | ts[i + 2] << 16 | ts[i + 3] << 24); } return output; } private static UInt32[] MD5_Trasform(UInt32[] x) { UInt32 a, b, c, d; for (int k = 0; k < x.Length; k += 16) { a = A; b = B; c = C; d = D; /* Round 1 */ FF(ref a, b, c, d, x[k + 0], S11, 0xd76aa478); /* 1 */ FF(ref d, a, b, c, x[k + 1], S12, 0xe8c7b756); /* 2 */ FF(ref c, d, a, b, x[k + 2], S13, 0x242070db); /* 3 */ FF(ref b, c, d, a, x[k + 3], S14, 0xc1bdceee); /* 4 */ FF(ref a, b, c, d, x[k + 4], S11, 0xf57c0faf); /* 5 */ FF(ref d, a, b, c, x[k + 5], S12, 0x4787c62a); /* 6 */ FF(ref c, d, a, b, x[k + 6], S13, 0xa8304613); /* 7 */ FF(ref b, c, d, a, x[k + 7], S14, 0xfd469501); /* 8 */ FF(ref a, b, c, d, x[k + 8], S11, 0x698098d8); /* 9 */ FF(ref d, a, b, c, x[k + 9], S12, 0x8b44f7af); /* 10 */ FF(ref c, d, a, b, x[k + 10], S13, 0xffff5bb1); /* 11 */ FF(ref b, c, d, a, x[k + 11], S14, 0x895cd7be); /* 12 */ FF(ref a, b, c, d, x[k + 12], S11, 0x6b901122); /* 13 */ FF(ref d, a, b, c, x[k + 13], S12, 0xfd987193); /* 14 */ FF(ref c, d, a, b, x[k + 14], S13, 0xa679438e); /* 15 */ FF(ref b, c, d, a, x[k + 15], S14, 0x49b40821); /* 16 */ /* Round 2 */ GG(ref a, b, c, d, x[k + 1], S21, 0xf61e2562); /* 17 */ GG(ref d, a, b, c, x[k + 6], S22, 0xc040b340); /* 18 */ GG(ref c, d, a, b, x[k + 11], S23, 0x265e5a51); /* 19 */ GG(ref b, c, d, a, x[k + 0], S24, 0xe9b6c7aa); /* 20 */ GG(ref a, b, c, d, x[k + 5], S21, 0xd62f105d); /* 21 */ GG(ref d, a, b, c, x[k + 10], S22, 0x2441453); /* 22 */ GG(ref c, d, a, b, x[k + 15], S23, 0xd8a1e681); /* 23 */ GG(ref b, c, d, a, x[k + 4], S24, 0xe7d3fbc8); /* 24 */ GG(ref a, b, c, d, x[k + 9], S21, 0x21e1cde6); /* 25 */ GG(ref d, a, b, c, x[k + 14], S22, 0xc33707d6); /* 26 */ GG(ref c, d, a, b, x[k + 3], S23, 0xf4d50d87); /* 27 */ GG(ref b, c, d, a, x[k + 8], S24, 0x455a14ed); /* 28 */ GG(ref a, b, c, d, x[k + 13], S21, 0xa9e3e905); /* 29 */ GG(ref d, a, b, c, x[k + 2], S22, 0xfcefa3f8); /* 30 */ GG(ref c, d, a, b, x[k + 7], S23, 0x676f02d9); /* 31 */ GG(ref b, c, d, a, x[k + 12], S24, 0x8d2a4c8a); /* 32 */ /* Round 3 */ HH(ref a, b, c, d, x[k + 5], S31, 0xfffa3942); /* 33 */ HH(ref d, a, b, c, x[k + 8], S32, 0x8771f681); /* 34 */ HH(ref c, d, a, b, x[k + 11], S33, 0x6d9d6122); /* 35 */ HH(ref b, c, d, a, x[k + 14], S34, 0xfde5380c); /* 36 */ HH(ref a, b, c, d, x[k + 1], S31, 0xa4beea44); /* 37 */ HH(ref d, a, b, c, x[k + 4], S32, 0x4bdecfa9); /* 38 */ HH(ref c, d, a, b, x[k + 7], S33, 0xf6bb4b60); /* 39 */ HH(ref b, c, d, a, x[k + 10], S34, 0xbebfbc70); /* 40 */ HH(ref a, b, c, d, x[k + 13], S31, 0x289b7ec6); /* 41 */ HH(ref d, a, b, c, x[k + 0], S32, 0xeaa127fa); /* 42 */ HH(ref c, d, a, b, x[k + 3], S33, 0xd4ef3085); /* 43 */ HH(ref b, c, d, a, x[k + 6], S34, 0x4881d05); /* 44 */ HH(ref a, b, c, d, x[k + 9], S31, 0xd9d4d039); /* 45 */ HH(ref d, a, b, c, x[k + 12], S32, 0xe6db99e5); /* 46 */ HH(ref c, d, a, b, x[k + 15], S33, 0x1fa27cf8); /* 47 */ HH(ref b, c, d, a, x[k + 2], S34, 0xc4ac5665); /* 48 */ /* Round 4 */ II(ref a, b, c, d, x[k + 0], S41, 0xf4292244); /* 49 */ II(ref d, a, b, c, x[k + 7], S42, 0x432aff97); /* 50 */ II(ref c, d, a, b, x[k + 14], S43, 0xab9423a7); /* 51 */ II(ref b, c, d, a, x[k + 5], S44, 0xfc93a039); /* 52 */ II(ref a, b, c, d, x[k + 12], S41, 0x655b59c3); /* 53 */ II(ref d, a, b, c, x[k + 3], S42, 0x8f0ccc92); /* 54 */ II(ref c, d, a, b, x[k + 10], S43, 0xffeff47d); /* 55 */ II(ref b, c, d, a, x[k + 1], S44, 0x85845dd1); /* 56 */ II(ref a, b, c, d, x[k + 8], S41, 0x6fa87e4f); /* 57 */ II(ref d, a, b, c, x[k + 15], S42, 0xfe2ce6e0); /* 58 */ II(ref c, d, a, b, x[k + 6], S43, 0xa3014314); /* 59 */ II(ref b, c, d, a, x[k + 13], S44, 0x4e0811a1); /* 60 */ II(ref a, b, c, d, x[k + 4], S41, 0xf7537e82); /* 61 */ II(ref d, a, b, c, x[k + 11], S42, 0xbd3af235); /* 62 */ II(ref c, d, a, b, x[k + 2], S43, 0x2ad7d2bb); /* 63 */ II(ref b, c, d, a, x[k + 9], S44, 0xeb86d391); /* 64 */ A += a; B += b; C += c; D += d; } return new UInt32[] { A, B, C, D }; } public static byte[] MD5Array(byte[] input) { MD5_Init(); UInt32[] block = MD5_Append(input); UInt32[] bits = MD5_Trasform(block); /* Encodes bits (UInt32[]) into output (byte[]). Assumes len is * a multiple of 4. */ byte[] output = new byte[bits.Length * 4]; for (int i = 0, j = 0; i < bits.Length; i++, j += 4) { output[j] = (byte)(bits[i] & 0xff); output[j + 1] = (byte)((bits[i] >> 8) & 0xff); output[j + 2] = (byte)((bits[i] >> 16) & 0xff); output[j + 3] = (byte)((bits[i] >> 24) & 0xff); } return output; } public static string ArrayToHexString(byte[] array, bool uppercase) { string hexString = ""; string format = "x2"; if (uppercase) { format = "X2"; } foreach (byte b in array) { hexString += b.ToString(format); } return hexString; } public static string MDString(string message) { char[] c = message.ToCharArray(); byte[] b = new byte[c.Length]; for (int i = 0; i < c.Length; i++) { b[i] = (byte)c[i]; } byte[] digest = MD5Array(b); return ArrayToHexString(digest, false); } public static string MDFile(string fileName) { FileStream fs = File.Open(fileName, FileMode.Open, FileAccess.Read); byte[] array = new byte[fs.Length]; fs.Read(array, 0, (int)fs.Length); byte[] digest = MD5Array(array); fs.Close(); return ArrayToHexString(digest, false); } public static string Test(string message) { return "rnMD5 (" + message + ") = " + MD5.MDString(message); } static void Main(string[] args) { Console.WriteLine(Test("")); Console.WriteLine(); Console.WriteLine(Test("a")); Console.WriteLine(); Console.WriteLine(Test("abc")); Console.WriteLine(); Console.WriteLine(Test("message digest")); Console.WriteLine(); Console.WriteLine(Test("abcdefghijklmnopqrstuvwxyz")); Console.WriteLine(); Console.WriteLine(Test("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789")); Console.WriteLine(); Console.WriteLine(Test("12345678901234567890123456789012345678901234567890123456789012345678901234567890")); Console.ReadLine(); } } 个性签名:做要做好,做到不三不四不如不做。