zoukankan      html  css  js  c++  java
  • 并查集的一些简单了解

    并查集(Union-find Sets)是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题。一些常见的用途有求连通子图、求最小生成树的 Kruskal 算法和求最近公共祖先(Least Common Ancestors, LCA)等。

    使用并查集时,首先会存在一组不相交的动态集合 S={S1,S2,,Sk}S={S1,S2,⋯,Sk} ,一般都会使用一个整数表示集合中的一个元素。

    每个集合可能包含一个或多个元素,并选出集合中的某个元素作为代表。每个集合中具体包含了哪些元素是不关心的,具体选择哪个元素作为代表一般也是不关心的。我们关心的是,对于给定的元素,可以很快的找到这个元素所在的集合(的代表),以及合并两个元素所在的集合,而且这些操作的时间复杂度都是常数级的。

    并查集的基本操作有三个:

    1. makeSet(s):建立一个新的并查集,其中包含 s 个单元素集合。
    2. unionSet(x, y):把元素 x 和元素 y 所在的集合合并,要求 x 和 y 所在的集合不相交,如果相交则不合并。
    3. find(x):找到元素 x 所在的集合的代表,该操作也可以用于判断两个元素是否位于同一个集合,只要将它们各自的代表比较一下就可以了。

    图中有两棵树,分别对应两个集合,其中第一个集合为 {a,b,c,d}{a,b,c,d} ,代表元素是 aa ;第二个集合为 {e,f,g}{e,f,g} ,代表元素是 ee 。

    树的节点表示集合中的元素,指针表示指向父节点的指针,根节点的指针指向自己,表示其没有父节点。沿着每个节点的父节点不断向上查找,最终就可以找到该树的根节点,即该集合的代表元素。

    现在,应该可以很容易的写出 makeSet 和 find 的代码了,假设使用一个足够长的数组来存储树节点(很类似之前讲到的静态链表),那么 makeSet 要做的就是构造出如图 2 的森林,其中每个元素都是一个单元素集合,即父节点是其自身:

    1 const int MAXSIZE = 500;
    2 int uset[MAXSIZE];
    3  
    4 void makeSet(int size) {
    5     for(int i = 0;i < size;i++) uset[i] = i;
    6 }

    接下来,就是 find 操作了,如果每次都沿着父节点向上查找,那时间复杂度就是树的高度,完全不可能达到常数级。这里需要应用一种非常简单而有效的策略——路径压缩。

     1 int find(int x) {
     2     if (x != uset[x]) uset[x] = find(uset[x]);
     3     return uset[x];
     4 }
     5 int find(int x) {
     6     int p = x, t;
     7     while (uset[p] != p) p = uset[p];
     8     while (x != p) { t = uset[x]; uset[x] = p; x = t; }
     9     return x;
    10 }

    最后是合并操作 unionSet,并查集的合并也非常简单,就是将一个集合的树根指向另一个集合的树根,这里也可以应用一个简单的启发式策略——按秩合并。该方法使用秩来表示树高度的上界,在合并时,总是将具有较小秩的树根指向具有较大秩的树根。简单的说,就是总是将比较矮的树作为子树,添加到较高的树中。为了保存秩,需要额外使用一个与 uset 同长度的数组,并将所有元素都初始化为 0。

    1 void unionSet(int x, int y) {
    2     if ((x = find(x)) == (y = find(y))) return;
    3     if (rank[x] > rank[y]) uset[y] = x;
    4     else {
    5         uset[x] = y;
    6         if (rank[x] == rank[y]) rank[y]++;
    7     }
    8 }

  • 相关阅读:
    [leetcode]N-Queens II
    基于Linux的智能家居的设计(4)
    eclipse集成Python开发环境
    创业三年,离开公司,请各位看一下我的简历,指点一下未来的路
    Jquery实现选项卡功能
    R语言中两个数组(或向量)的外积怎样计算
    《Java程序猿面试笔试宝典》之组合与继承有什么差别
    Sublime Text3打造U盘便携Lua IDE
    php Laravel 框架之建立后台目录
    树的同构(25 分)
  • 原文地址:https://www.cnblogs.com/blvt/p/7243980.html
Copyright © 2011-2022 走看看