zoukankan      html  css  js  c++  java
  • Built(最小生成树+构图离散化)

    个人心得:看了题目很明确,最小生成树,但是但是周赛卡住了,因为10W的点若一个一个找出距离很明显内存和时间都炸了,

    静下心来,画了下图,仔细一想,任意一个点都只会在她左右俩边选择建立联系,那么我们只要对做表X,Y分别排序然后再构建

    距离,然后Kruaskal就OK了。

    希望以后思维能够更活跃点,才能不失初望。

    题目:

    There are N towns on a plane. The i-th town is located at the coordinates (xi,yi). There may be more than one town at the same coordinates.

    You can build a road between two towns at coordinates (a,b) and (c,d) for a cost of min(|ac|,|bd|) yen (the currency of Japan). It is not possible to build other types of roads.

    Your objective is to build roads so that it will be possible to travel between every pair of towns by traversing roads. At least how much money is necessary to achieve this?

    Constraints

     

    • 2≤N≤105
    • 0≤xi,yi≤109
    • All input values are integers.

    Input

     

    Input is given from Standard Input in the following format:

    N
    x1 y1
    x2 y2
    :
    xN yN
    

    Output

     

    Print the minimum necessary amount of money in order to build roads so that it will be possible to travel between every pair of towns by traversing roads.

    Sample Input 1

     

    3
    1 5
    3 9
    7 8
    

    Sample Output 1

     

    3
    

    Build a road between Towns 1 and 2, and another between Towns 2 and 3. The total cost is 2+1=3 yen.

    Sample Input 2

     

    6
    8 3
    4 9
    12 19
    18 1
    13 5
    7 6
    

    Sample Output 2

     

    8
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<iomanip>
    #include<algorithm>
    using namespace std;
    #define inf 1<<29
    #define nu 1000005
    #define maxnum 100005
    #define num 30
    int n;
    struct Md
    {
        int v,u,flag;
    
    }M[maxnum],C[maxnum];
    struct Node
    {
        int x,y,z;
    
    }dis[nu];
    bool cmp(Md a,Md b){
       return a.v<b.v;
    }
    bool cmp0(Md a,Md b){
       return a.u<b.u;
    }
    bool cmp1(Node a,Node b){
       return a.z<b.z;
    }
    int book[maxnum];
    void init()
    {
        for(int i=1;i<=n;i++)
            book[i]=i;
    
    }
    int getx(int x)
    {
        if(book[x]!=x)
            book[x]=getx(book[x]);
        return book[x];
    }
    void mergexy(int x,int y)
    {
         book[y]=x;
    }
    void change(){
        for(int i=1;i<=n;i++)
            {
                C[i].v=M[i].v;
                C[i].u=M[i].u;
                C[i].flag=M[i].flag;
            }
    }
    int main()
    {
        scanf("%d",&n);
    
        for(int i=1;i<=n;i++){
             scanf("%d%d",&M[i].v,&M[i].u);
             M[i].flag=i;
        }
      /*  int t=unique(M+1,M+n)-M;
    
          n=t;*/
          change();
          int fl=0;
          sort(C+1,C+n+1,cmp);
          for(int i=1;i<n;i++)
          {
              dis[++fl].x=C[i].flag,dis[fl].y=C[i+1].flag,dis[fl].z=(min(fabs(C[i].v-C[i+1].v),fabs(C[i].u-C[i+1].u)));
          }
          change();
          sort(C+1,C+n+1,cmp0);
          for(int i=1;i<n;i++)
          {
              dis[++fl].x=C[i].flag,dis[fl].y=C[i+1].flag,dis[fl].z=(min(fabs(C[i].v-C[i+1].v),fabs(C[i].u-C[i+1].u)));
          }
        sort(dis+1,dis+fl+1,cmp1);
       /*  cout<<flag<<endl;
        for(int i=1;i<=flag;i++)
            cout<<dis[i].z<<endl;*/
            init();
             int number=0;
            int sum=0;
           for(int i=1;i<=fl;i++)
            {
                int p=getx(dis[i].x),q=getx(dis[i].y);
                if(p!=q){
                    mergexy(p,q);
                    number++;
                    sum+=dis[i].z;
            }
            if(number==n)  break;
        }
       cout<<sum<<endl;
        return 0;
    }
    

      



  • 相关阅读:
    《C#高级编程》读书笔记(十五):任务、线程和同步之二 任务
    sklearn训练模型的保存与加载
    机器学习中样本不平衡的处理方法
    剑指Offer(四):重建二叉树
    剑指Offer(三):从尾到头打印链表
    机器学习笔记(一)----基本概念
    100 个网络基础知识普及,看完成半个网络高手
    协方差基本概念及公式
    正态分布基本概念及公式
    np.random.multivariate_normal方法浅析
  • 原文地址:https://www.cnblogs.com/blvt/p/7978718.html
Copyright © 2011-2022 走看看