题目链接 :http://abc070.contest.atcoder.jp/tasks/abc070_d
题目大意:给一棵树,一个节点K和Q次询问x,y,问x倒y经过节点k的距离。
解题思路:以K为根深搜标记距离即可。
加边的时候加两条边!!!
数组大小开两倍!!!
爆int用ll!!!
代码:
1 const int inf = 0x3f3f3f3f; 2 const int maxn = 5e5 + 5; 3 struct edge{ 4 int to, next; 5 ll val; 6 }; 7 edge edges[maxn]; 8 int tot, head[maxn], n; 9 ll dis[maxn]; 10 short vis[maxn]; 11 12 void init(){ 13 memset(head, -1, sizeof(head)); 14 memset(vis, 0, sizeof(vis)); 15 tot = 0; 16 } 17 void addEdge(int u, int v, ll w){ 18 edges[tot].to = v; 19 edges[tot].val = w; 20 edges[tot].next = head[u]; 21 head[u] = tot++; 22 } 23 24 void dfs(int u, ll val){ 25 vis[u] = 1; dis[u] = val; 26 for(int i = head[u]; i != -1; i = edges[i].next){ 27 int v = edges[i].to; 28 if(!vis[v]) dfs(v, val + edges[i].val); 29 } 30 } 31 32 int main(){ 33 init(); 34 scanf("%d", &n); 35 for(int i = 1; i < n; i++) { 36 int u, v, w; 37 scanf("%d %d %d", &u, &v, &w); 38 addEdge(u, v, w); 39 addEdge(v, u, w); 40 } 41 int q, k; 42 scanf("%d %d", &q, &k); 43 dfs(k, 0); 44 while(q--){ 45 int x, y; 46 scanf("%d %d", &x, &y); 47 printf("%lld ", dis[x] + dis[y]); 48 } 49 }
题目:
D - Transit Tree Path
Time limit : 2sec / Memory limit : 256MB
Score : 400 points
Problem Statement
You are given a tree with N vertices.
Here, a tree is a kind of graph, and more specifically, a connected undirected graph with N−1 edges, where N is the number of its vertices.
The i-th edge (1≤i≤N−1) connects Vertices ai and bi, and has a length of ci.
You are also given Q queries and an integer K. In the j-th query (1≤j≤Q):
- find the length of the shortest path from Vertex xj and Vertex yj via Vertex K.
Constraints
- 3≤N≤105
- 1≤ai,bi≤N(1≤i≤N−1)
- 1≤ci≤109(1≤i≤N−1)
- The given graph is a tree.
- 1≤Q≤105
- 1≤K≤N
- 1≤xj,yj≤N(1≤j≤Q)
- xj≠yj(1≤j≤Q)
- xj≠K,yj≠K(1≤j≤Q)
Input
Input is given from Standard Input in the following format:
N a1 b1 c1 : aN−1 bN−1 cN−1 Q K x1 y1 : xQ yQ
Output
Print the responses to the queries in Q lines.
In the j-th line j(1≤j≤Q), print the response to the j-th query.
Sample Input 1
5 1 2 1 1 3 1 2 4 1 3 5 1 3 1 2 4 2 3 4 5
Sample Output 1
3 2 4
The shortest paths for the three queries are as follows:
- Query 1: Vertex 2 → Vertex 1 → Vertex 2 → Vertex 4 : Length 1+1+1=3
- Query 2: Vertex 2 → Vertex 1 → Vertex 3 : Length 1+1=2
- Query 3: Vertex 4 → Vertex 2 → Vertex 1 → Vertex 3 → Vertex 5 : Length 1+1+1+1=4
Sample Input 2
7 1 2 1 1 3 3 1 4 5 1 5 7 1 6 9 1 7 11 3 2 1 3 4 5 6 7
Sample Output 2
5 14 22
The path for each query must pass Vertex K=2.
Sample Input 3
10 1 2 1000000000 2 3 1000000000 3 4 1000000000 4 5 1000000000 5 6 1000000000 6 7 1000000000 7 8 1000000000 8 9 1000000000 9 10 1000000000 1 1 9 10
Sample Output 3
17000000000