zoukankan      html  css  js  c++  java
  • leetcode 746. Min Cost Climbing Stairs

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

    Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

    Example 1:

    Input: cost = [10, 15, 20]
    Output: 15
    Explanation: Cheapest is start on cost[1], pay that cost and go to the top.
    

    Example 2:

    Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
    Output: 6
    Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].
    

    Note:

      1. cost will have a length in the range [2, 1000].
      2. Every cost[i] will be an integer in the range [0, 999].
    class Solution(object):
        def minCostClimbingStairs(self, cost):
            """
            :type cost: List[int]
            :rtype: int
            """
            # mincost = min(mincost(n-1), mincost(n-2))+cost[n]
            # n = 2               
            a = cost[0]
            b = cost[1]
            for i in range(2, len(cost)):
                b,a = min(a, b)+cost[i], b
            return min(b, a)

    注意:本质上是dp,dp[i]表示经过step i的min cost。

    那么最后一步cost应该是min(dp[i], dp[i-1]) 表示要么最后一步是踩step i,cost就是dp[i],要么不踩step[i],必然是从step i-1过来的,跨了两步。

    空间O(n)的解法:

    Solution #1: Bottom-Up dynamic programming
    
    Let dp[i] be the minimum cost to reach the i-th stair.
    
    Base cases:
    
    dp[0]=cost[0]
    dp[1]=cost[1]
    
    DP formula:
    
    dp[i]=cost[i]+min(dp[i-1],dp[i-2])
    
    Note: the top floor n can be reached from either 1 or 2 stairs away, return the minimum.
    
    class Solution {
    public:
        int minCostClimbingStairs(vector<int>& cost) {
            int n=(int)cost.size();
            vector<int> dp(n);
            dp[0]=cost[0];
            dp[1]=cost[1];
            for (int i=2; i<n; ++i)
                dp[i]=cost[i]+min(dp[i-2],dp[i-1]);
            return min(dp[n-2],dp[n-1]);
        }
    };

    或者是:

    class Solution {
        public int minCostClimbingStairs(int[] cost) {
            int [] mc = new int[cost.length + 1];
            mc[0] = cost[0];
            mc[1] = cost[1];
            
            for(int i = 2; i <= cost.length; i++){
                int costV = (i==cost.length)?0:cost[i];
                mc[i] = Math.min(mc[i-1] + costV, mc[i-2] + costV);
            }
            return mc[cost.length];
        }
    }
  • 相关阅读:
    JArray
    签名和验签
    private、protected、public和internal的区别
    DataTime.Now.Ticks
    NameValuePair 简单名称值对节点类型
    01安卓目录结构
    SDK目录结构
    java wait和notify及 synchronized sleep 总结
    安卓常用的第三方框架
    OkHttp使用教程
  • 原文地址:https://www.cnblogs.com/bonelee/p/8728935.html
Copyright © 2011-2022 走看看