zoukankan      html  css  js  c++  java
  • leetcode 746. Min Cost Climbing Stairs

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed).

    Once you pay the cost, you can either climb one or two steps. You need to find minimum cost to reach the top of the floor, and you can either start from the step with index 0, or the step with index 1.

    Example 1:

    Input: cost = [10, 15, 20]
    Output: 15
    Explanation: Cheapest is start on cost[1], pay that cost and go to the top.
    

    Example 2:

    Input: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
    Output: 6
    Explanation: Cheapest is start on cost[0], and only step on 1s, skipping cost[3].
    

    Note:

      1. cost will have a length in the range [2, 1000].
      2. Every cost[i] will be an integer in the range [0, 999].
    class Solution(object):
        def minCostClimbingStairs(self, cost):
            """
            :type cost: List[int]
            :rtype: int
            """
            # mincost = min(mincost(n-1), mincost(n-2))+cost[n]
            # n = 2               
            a = cost[0]
            b = cost[1]
            for i in range(2, len(cost)):
                b,a = min(a, b)+cost[i], b
            return min(b, a)

    注意:本质上是dp,dp[i]表示经过step i的min cost。

    那么最后一步cost应该是min(dp[i], dp[i-1]) 表示要么最后一步是踩step i,cost就是dp[i],要么不踩step[i],必然是从step i-1过来的,跨了两步。

    空间O(n)的解法:

    Solution #1: Bottom-Up dynamic programming
    
    Let dp[i] be the minimum cost to reach the i-th stair.
    
    Base cases:
    
    dp[0]=cost[0]
    dp[1]=cost[1]
    
    DP formula:
    
    dp[i]=cost[i]+min(dp[i-1],dp[i-2])
    
    Note: the top floor n can be reached from either 1 or 2 stairs away, return the minimum.
    
    class Solution {
    public:
        int minCostClimbingStairs(vector<int>& cost) {
            int n=(int)cost.size();
            vector<int> dp(n);
            dp[0]=cost[0];
            dp[1]=cost[1];
            for (int i=2; i<n; ++i)
                dp[i]=cost[i]+min(dp[i-2],dp[i-1]);
            return min(dp[n-2],dp[n-1]);
        }
    };

    或者是:

    class Solution {
        public int minCostClimbingStairs(int[] cost) {
            int [] mc = new int[cost.length + 1];
            mc[0] = cost[0];
            mc[1] = cost[1];
            
            for(int i = 2; i <= cost.length; i++){
                int costV = (i==cost.length)?0:cost[i];
                mc[i] = Math.min(mc[i-1] + costV, mc[i-2] + costV);
            }
            return mc[cost.length];
        }
    }
  • 相关阅读:
    (8) MySQL主从复制架构使用方法
    (7) MySQL数据库备份详解
    (6) MySQL慢查询日志的使用
    解决通过Nginx转发的服务请求头header中含有下划线的key,其值取不到的问题
    (5) 电商场景下的常见业务SQL处理
    (4) MySQL中EXPLAIN执行计划分析
    (3) MySQL分区表使用方法
    (2) 电商数据库表设计
    (1) Mysql高性能优化规范建议
    linux每日命令(39):lsof命令
  • 原文地址:https://www.cnblogs.com/bonelee/p/8728935.html
Copyright © 2011-2022 走看看