zoukankan      html  css  js  c++  java
  • LongAdder类学习笔记

    优秀原文

    1. LongAdder | LongAccumulator简介
    2. 源码阅读:全方位讲解LongAdder

    说到LongAdder,不得不提的就是AtomicLong。AtomicLong是JDK1.5开始出现的,里面主要使用了一个long类型的value作为成员变量。它的原理是依靠底层CAS方式来保障原子性的更新数据,在要增加或减少数据时,会使用死循环不断地CAS到特定的值,从而达到更新数据的目的,在并发很高的情况下,这将产生很多的无用空循环,浪费CPU资源。

    public final long getAndSetLong(Object var1, long var2, long var4) {
        long var6;
        do {
            var6 = this.getLongVolatile(var1, var2);
        } while(!this.compareAndSwapLong(var1, var2, var6, var4));
    
        return var6;
    }
    

    Striped64类

    public class LongAdder extends Striped64 implements Serializable
    

    LongAdder继承了Striped64类,来实现累加功能的,它是实现高并发累加的工具类;

    Striped64的设计核心思路就是通过内部的分散计算来避免竞争。

    Striped64内部包含一个base数值和一个Cell[]类型的 cells数组,又叫hash表。没有竞争的情况下,要累加的数通过cas累加到base上;如果有竞争的话,会将要累加的数累加到Cells数组中的某个cell元素里面,在获取当前累加总计时,才会将base值加上cells数组中的各个元素值来计算出当前sum总值。所以整个Striped64的值为sum=base+∑[0~n]cells。

    image.png-26.3kB

    Striped64内部三个重要的成员变量:

    /** 
     * 存放Cell的hash表,大小为2的幂。 
     */  
    transient volatile Cell[] cells;  
    /** 
     * 基础值,
     * 1. 在没有竞争时会更新这个值;
     * 2. 在cells初始化的过程中,cells处于不可用的状态,这时候也会尝试将通过cas操作值累加到base。 
     */  
    transient volatile long base;  
    /** 
     * 自旋锁,通过CAS操作加锁,用于保护创建或者扩展Cell表。 
     */  
    transient volatile int cellsBusy; 
    

    成员变量cells

    cells数组是LongAdder高性能实现的必杀器:

    AtomicInteger只有一个value,所有线程累加都要通过CAS竞争value这一个变量,高并发下线程争用非常严重;而LongAdder则有两个值用于累加,一个是base,它的作用类似于AtomicInteger里面的value,在没有竞争的情况不会用到cells数组,它为null,这时会使用base做累加,有了竞争后cells数组就上场了,第一次初始化长度为2,以后每次扩容都是变为原来的两倍,直到cells数组的长度大于等于当前服务器cpu的数量为止就不在扩容(想下为什么到超过cpu数量的时候就不再扩容);每个线程会通过线程对cells[threadLocalRandomProbe%cells.length]位置的Cell对象中的value做累加,这样相当于将线程绑定到了cells中的某个cell对象上;

    1. 超过CPU数量的时候就不再扩容 是因为CPU的数量代表了机器处理能力,当超过CPU数量时,多出来的cells数组元素没有太大作用。

    成员变量cellsBusy

    cellsBusy,它有两个值0 或1,它的作用是当要修改cells数组时加锁,防止多线程同时修改cells数组,0为无锁,1为加锁,加锁的状况有三种:

    1. cells数组初始化的时候;
    2. cells数组扩容的时候;
    3. 如果cells数组中某个元素为null,给这个位置创建新的Cell对象的时候;

    成员变量base

    它有两个作用:

    1. 在开始没有竞争的情况下,将累加值累加到base
    2. 在cells初始化的过程中,cells不可用,这时会尝试将值累加到base上;

    Cell内部类

    //为提高性能,使用注解@sun.misc.Contended,用来避免伪共享,
    @sun.misc.Contended static final class Cell {
        //用来保存要累加的值
        volatile long value;
        Cell(long x) { value = x; }
        //使用UNSAFE类的cas来更新value值
        final boolean cas(long cmp, long val) {
            return UNSAFE.compareAndSwapLong(this, valueOffset, cmp, val);
        }
        private static final sun.misc.Unsafe UNSAFE;
        //value在Cell类中存储位置的偏移量;
        private static final long valueOffset;
        //这个静态方法用于获取偏移量
        static {
            try {
                UNSAFE = sun.misc.Unsafe.getUnsafe();
                Class<?> ak = Cell.class;
                valueOffset = UNSAFE.objectFieldOffset
                    (ak.getDeclaredField("value"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    }
    

    这个类很简单,final类型,内部有一个value值,使用cas来更新它的值;Cell类唯一需要注意的地方就是Cell类的注解@sun.misc.Contended。

    伪共享

    要理解Contended注解的作用,要先弄清楚什么是伪共享,会有什么影响,如何解决伪共享。

    缓存行cache line

    要理解伪共享先要弄清楚什么是cache line,cpu的缓存系统中是以缓存行(cache line)为单位存储的,缓存行是2的整数幂个连续字节,一般为32-256个字节。最常见的缓存行大小是64个字节,cache line是cache和memory之间数据传输的最小单元。

    大多数现代cpu都one-die了L1和L2cache。对于L1 cache,大多是write though的;L2 cache则是write back的,不会立即写回memory,这就会导致cache和memory的内容的不一致;另外,对于mp(multi processors)的环境,由于cache是cpu私有的,不同cpu的cache的内容也存在不一致的问题,因此很多mp的的计算架构,不论是ccnuma还是smp都实现了cache coherence的机制,即不同cpu的cache一致性机制。

    Write-through(直写模式)在数据更新时,同时写入缓存Cache和后端存储。此模式的优点是操作简单;缺点是因为数据修改需要同时写入存储,数据写入速度较慢。

    Write-back(回写模式)在数据更新时只写入缓存Cache。只在数据被替换出缓存时,被修改的缓存数据才会被写到后端存储。此模式的优点是数据写入速度快,因为不需要写存储;缺点是一旦更新后的数据未被写入存储时出现系统掉电的情况,数据将无法找回。

    cache coherence的一种实现是通过cache-snooping协议,每个cpu通过对bus的snoop实现对其它cpu读写cache的监控:

    1. 当cpu1要写cache时,其它cpu就会检查自己cache中对应的cache line,如果是dirty的,就write back到memory,并且会将cpu1的相关cache line刷新;如果不是dirty的,就invalidate该cache line。

    2. 当cpu1要读cache时,其它cpu就会将自己cache中对应的cache line中标记为dirty的部分write back到memory,并且会将cpu1的相关cache line刷新。

    所以,提高cpu的cache hit rate,减少cache和memory之间的数据传输,将会提高系统的性能。

    因此,在程序和二进制对象的内存分配中保持cache line aligned就十分重要,如果不保证cache line对齐,出现多个cpu中并行运行的进程或者线程同时读写同一个cache line的情况的概率就会很大。这时cpu的cache和memory之间会反复出现write back和refresh情况,这种情形就叫做cache thrashing。

    为了有效的避免cache thrashing,通常有以下两种途径:

    1. 对于heap的分配,很多系统在malloc调用中实现了强制的alignment。
    2. 对于stack的分配,很多编译器提供了stack aligned的选项。

    当然,如果在编译器指定了stack aligned,程序的尺寸将会变大,会占用更多的内存。因此,这中间的取舍需要仔细考虑;

    关于伪共享详情请看这里介绍以及这里

    为了解决这个问题在jdk1.6会采用long padding的方式,就是在防止被伪共享的变量的前后加上7个long类型的变量,如下所示:

    public class VolatileLongPadding {
        volatile long p0, p1, p2, p3, p4, p5, p6;
        volatile long v = 0L;
        volatile long q0, q1, q2, q3, q4, q5, q6;
    }
    

    jdk1.7的某个版本后会优化掉long padding,为了解决这个问题,在jdk1.8中加入了@sun.misc.Contended。

    LongAdder

    前面说了一大堆,现在终于进入到正题了。

    LongAdder –>add方法

    add方法是LongAdder累加的方法,传入的参数x为要累加的值;

    public void add(long x) {
    
        Cell[] as; long b, v; int m; Cell a;
        /**
         * 如果一下两种条件则继续执行if内的语句
         * 1. cells数组不为null(不存在争用的时候,cells数组一定为null,一旦对base的cas操作失败,才会初始化cells数组)
         * 2. 如果cells数组为null,如果casBase执行成功,则直接返回,如果casBase方法执行失败(casBase失败,说明第一次争用冲突产生,需要对cells数组初始化)进入if内;
         * casBase方法很简单,就是通过UNSAFE类的cas设置成员变量base的值为base+要累加的值
         * casBase执行成功的前提是无竞争,这时候cells数组还没有用到为null,可见在无竞争的情况下是类似于AtomticInteger处理方式,使用cas做累加。
         */
        if ((as = cells) != null || !casBase(b = base, b + x)) {
            //uncontended判断cells数组中,当前线程要做cas累加操作的某个元素是否#不#存在争用,如果cas失败则存在争用;uncontended=false代表存在争用,uncontended=true代表不存在争用。
    
            boolean uncontended = true;
            /**
            *1. as == null : cells数组未被初始化,成立则直接进入if执行cell初始化
            *2. (m = as.length - 1) < 0: cells数组的长度为0
            *条件1与2都代表cells数组没有被初始化成功,初始化成功的cells数组长度为2;
            *3. (a = as[getProbe() & m]) == null :如果cells被初始化,且它的长度不为0,则通过getProbe方法获取当前线程Thread的threadLocalRandomProbe变量的值,初始为0,然后执行threadLocalRandomProbe&(cells.length-1 ),相当于m%cells.length;如果cells[threadLocalRandomProbe%cells.length]的位置为null,这说明这个位置从来没有线程做过累加,需要进入if继续执行,在这个位置创建一个新的Cell对象;
            *4. !(uncontended = a.cas(v = a.value, v + x)):尝试对cells[threadLocalRandomProbe%cells.length]位置的Cell对象中的value值做累加操作,并返回操作结果,如果失败了则进入if,重新计算一个threadLocalRandomProbe;
    
            如果进入if语句执行longAccumulate方法,有三种情况
            1. 前两个条件代表cells没有初始化,
            2. 第三个条件指当前线程hash到的cells数组中的位置还没有其它线程做过累加操作,
            3. 第四个条件代表产生了冲突,uncontended=false
            **/
            if (as == null || (m = as.length - 1) < 0 ||
                (a = as[getProbe() & m]) == null ||
                !(uncontended = a.cas(v = a.value, v + x)))
                longAccumulate(x, null, uncontended);
        }
    }
    

    longAccumulate方法

    三个参数第一个为要累加的值,第二个为null,第三个为wasUncontended表示调用方法之前的add方法是否未发生竞争。

    final void longAccumulate(long x, LongBinaryOperator fn,
                              boolean wasUncontended) {
        //获取当前线程的threadLocalRandomProbe值作为hash值,如果当前线程的threadLocalRandomProbe为0,说明当前线程是第一次进入该方法,则强制设置线程的threadLocalRandomProbe为ThreadLocalRandom类的成员静态私有变量probeGenerator的值,后面会详细将hash值的生成;
        //另外需要注意,如果threadLocalRandomProbe=0,代表新的线程开始参与cell争用的情况
        //1.当前线程之前还没有参与过cells争用(也许cells数组还没初始化,进到当前方法来就是为了初始化cells数组后争用的),是第一次执行base的cas累加操作失败;
        //2.或者是在执行add方法时,对cells某个位置的Cell的cas操作第一次失败,则将wasUncontended设置为false,那么这里会将其重新置为true;第一次执行操作失败;
        //凡是参与了cell争用操作的线程threadLocalRandomProbe都不为0;
        int h;
        if ((h = getProbe()) == 0) {
            //初始化ThreadLocalRandom;
            ThreadLocalRandom.current(); // force initialization
            //将h设置为0x9e3779b9
            h = getProbe();
            //设置未竞争标记为true
            wasUncontended = true;
        }
        //cas冲突标志,表示当前线程hash到的Cells数组的位置,做cas累加操作时与其它线程发生了冲突,cas失败;collide=true代表有冲突,collide=false代表无冲突 
        boolean collide = false;
        for (;;) {
            Cell[] as; Cell a; int n; long v;
            //这个主干if有三个分支
            //1.主分支一:处理cells数组已经正常初始化了的情况(这个if分支处理add方法的四个条件中的3和4)
            //2.主分支二:处理cells数组没有初始化或者长度为0的情况;(这个分支处理add方法的四个条件中的1和2)
            //3.主分支三:处理如果cell数组没有初始化,并且其它线程正在执行对cells数组初始化的操作,及cellbusy=1;则尝试将累加值通过cas累加到base上
            //先看主分支一
            if ((as = cells) != null && (n = as.length) > 0) {
                /**
                 *内部小分支一:这个是处理add方法内部if分支的条件3:如果被hash到的位置为null,说明没有线程在这个位置设置过值,没有竞争,可以直接使用,则用x值作为初始值创建一个新的Cell对象,对cells数组使用cellsBusy加锁,然后将这个Cell对象放到cells[m%cells.length]位置上 
                 */
                if ((a = as[(n - 1) & h]) == null) {
                    //cellsBusy == 0 代表当前没有线程cells数组做修改
                    if (cellsBusy == 0) {
                        //将要累加的x值作为初始值创建一个新的Cell对象,
                        Cell r = new Cell(x);
                        //如果cellsBusy=0无锁,则通过cas将cellsBusy设置为1加锁
                        if (cellsBusy == 0 && casCellsBusy()) {
                            //标记Cell是否创建成功并放入到cells数组被hash的位置上
                            boolean created = false;
                            try {
                                Cell[] rs; int m, j;
                                //再次检查cells数组不为null,且长度不为空,且hash到的位置的Cell为null
                                if ((rs = cells) != null &&
                                        (m = rs.length) > 0 &&
                                        rs[j = (m - 1) & h] == null) {
                                    //将新的cell设置到该位置
                                    rs[j] = r;
                                    created = true;
                                }
                            } finally {
                                //去掉锁
                                cellsBusy = 0;
                            }
                            //生成成功,跳出循环
                            if (created)
                                break;
                            //如果created为false,说明上面指定的cells数组的位置cells[m%cells.length]已经有其它线程设置了cell了,继续执行循环。
                            continue;
                        }
                    }
                    //如果执行的当前行,代表cellsBusy=1,有线程正在更改cells数组,代表产生了冲突,将collide设置为false
                    collide = false;
    
                    /**
                     *内部小分支二:如果add方法中条件4的通过cas设置cells[m%cells.length]位置的Cell对象中的value值设置为v+x失败,说明已经发生竞争,将wasUncontended设置为true,跳出内部的if判断,最后重新计算一个新的probe,然后重新执行循环;
                     */
                } else if (!wasUncontended)
                    //设置未竞争标志位true,继续执行,后面会算一个新的probe值,然后重新执行循环。 
                    wasUncontended = true;
                /**
                 *内部小分支三:新的争用线程参与争用的情况:处理刚进入当前方法时threadLocalRandomProbe=0的情况,也就是当前线程第一次参与cell争用的cas失败,这里会尝试将x值加到cells[m%cells.length]的value ,如果成功直接退出  
                 */
                else if (a.cas(v = a.value, ((fn == null) ? v + x :
                        fn.applyAsLong(v, x))))
                    break;
                /**
                 *内部小分支四:分支3处理新的线程争用执行失败了,这时如果cells数组的长度已经到了最大值(大于等于cup数量),或者是当前cells已经做了扩容,则将collide设置为false,后面重新计算prob的值
                 else if (n >= NCPU || cells != as)
                 collide = false;
                 /**
                 *内部小分支五:如果发生了冲突collide=false,则设置其为true;会在最后重新计算hash值后,进入下一次for循环
                 */
                else if (!collide)
                    //设置冲突标志,表示发生了冲突,需要再次生成hash,重试。 如果下次重试任然走到了改分支此时collide=true,!collide条件不成立,则走后一个分支
                    collide = true;
                /**
                 *内部小分支六:扩容cells数组,新参与cell争用的线程两次均失败,且符合库容条件,会执行该分支
                 */
                else if (cellsBusy == 0 && casCellsBusy()) {
                    try {
                        //检查cells是否已经被扩容
                        if (cells == as) {      // Expand table unless stale
                            Cell[] rs = new Cell[n << 1];
                            for (int i = 0; i < n; ++i)
                                rs[i] = as[i];
                            cells = rs;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                //为当前线程重新计算hash值
                h = advanceProbe(h);
    
                //这个大的分支处理add方法中的条件1与条件2成立的情况,如果cell表还未初始化或者长度为0,先尝试获取cellsBusy锁。
            }else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
                boolean init = false;
                try {                           // Initialize table
                    //初始化cells数组,初始容量为2,并将x值通过hash&1,放到0个或第1个位置上
                    if (cells == as) {
                        Cell[] rs = new Cell[2];
                        rs[h & 1] = new Cell(x);
                        cells = rs;
                        init = true;
                    }
                } finally {
                    //解锁
                    cellsBusy = 0;
                }
                //如果init为true说明初始化成功,跳出循环
                if (init)
                    break;
            }
            /**
             *如果以上操作都失败了,则尝试将值累加到base上;
             */
            else if (casBase(v = base, ((fn == null) ? v + x :
                    fn.applyAsLong(v, x))))
                break;                          // Fall back on using base
        }
    }
    

    关于hash的生成

    hash是LongAdder定位当前线程应该将值累加到cells数组哪个位置上的,所以hash的算法是非常重要的,下面就来看看它的实现。

    java的Thread类里面有一个成员变量:

    @sun.misc.Contended("tlr")
    int threadLocalRandomProbe;
    

    threadLocalRandomProbe这个变量的值就是LongAdder用来hash定位Cells数组位置的,平时线程的这个变量一般用不到,它的值一直都是0。

    在LongAdder的父类Striped64里通过getProbe方法获取当前线程threadLocalRandomProbe的值:

    static final int getProbe() {
        //PROBE是threadLocalRandomProbe变量在Thread类里面的偏移量,所以下面语句获取的就是threadLocalRandomProbe的值;
        return UNSAFE.getInt(Thread.currentThread(), PROBE);
    }
    

    threadLocalRandomProbe的初始化

    线程对LongAdder的累加操作,在没有进入longAccumulate方法前,threadLocalRandomProbe一直都是0,当发生争用后才会进入longAccumulate方法中,进入该方法第一件事就是判断threadLocalRandomProbe是否为0,如果为0,则将其设置为0x9e3779b9。

     int h;
    if ((h = getProbe()) == 0) {
        ThreadLocalRandom.current(); 
        h = getProbe();
        //设置未竞争标记为true
        wasUncontended = true;
    }
    

    重点在这行ThreadLocalRandom.current();

    public static ThreadLocalRandom current() {
        if (UNSAFE.getInt(Thread.currentThread(), PROBE) == 0)
            localInit();
        return instance;
    }
    

    在current方法中判断如果probe的值为0,则执行locaInit()方法,将当前线程的probe设置为非0的值,该方法实现如下:

    static final void localInit() {
        //private static final AtomicInteger probeGenerator =
        new AtomicInteger();
        //private static final int PROBE_INCREMENT = 0x9e3779b9;
        int p = probeGenerator.addAndGet(PROBE_INCREMENT);
        //prob不能为0
        int probe = (p == 0) ? 1 : p; // skip 0
        long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
        //获取当前线程
        Thread t = Thread.currentThread();
        UNSAFE.putLong(t, SEED, seed);
        //将probe的值更新为probeGenerator的值
        UNSAFE.putInt(t, PROBE, probe);
    }
    

    probeGenerator 是static 类型的AtomicInteger类,每执行一次localInit()方法,都会将probeGenerator 累加一次0x9e3779b9这个值;,0x9e3779b9这个数字的得来是 2^32 除以一个常数,这个常数就是传说中的黄金比例 1.6180339887;然后将当前线程的threadLocalRandomProbe设置为probeGenerator 的值,如果probeGenerator 为0,这取1;

    threadLocalRandomProbe重新生成

    就是将prob的值左右移位 、异或操作三次:

    static final int advanceProbe(int probe) {
        probe ^= probe << 13;   // xorshift
        probe ^= probe >>> 17;
        probe ^= probe << 5;
        UNSAFE.putInt(Thread.currentThread(), PROBE, probe);
        return probe;
    }
    

    probe从=1开始反复执行10次,结果如下:

    1 
    270369 
    67634689 
    -1647531835 
    307599695 
    -1896278063 
    745495504 
    632435482 
    435756210 
    2005365029 
    -1378868364
    

    LongAdder 和Atomic性能对比

    image.png-21kB

  • 相关阅读:
    【Java】Caused by: com.ibatis.sqlmap.client.SqlMapException: There is no statement named *** in this SqlMap.
    【Mac】Mac 使用 zsh 后, mvn 命令无效
    【Java】Exception thrown by the agent : java.rmi.server.ExportException: Port already in use: 1099
    【Android】drawable VS mipmap
    【Android】java.lang.SecurityException: getDeviceId: Neither user 10065 nor current process has android.permission.READ_PHONE_STATE
    java sql解析
    java动态编译
    随想
    一致hash算法
    一致性哈希算法及其在分布式系统中的应用
  • 原文地址:https://www.cnblogs.com/boothsun/p/8979614.html
Copyright © 2011-2022 走看看