zoukankan      html  css  js  c++  java
  • 最大化最小值poj2456Aggressive cows

    Aggressive cows
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 15528   Accepted: 7440

    Description

    Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are located along a straight line at positions x1,...,xN (0 <= xi <= 1,000,000,000). 

    His C (2 <= C <= N) cows don't like this barn layout and become aggressive towards each other once put into a stall. To prevent the cows from hurting each other, FJ want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?

    Input

    * Line 1: Two space-separated integers: N and C 

    * Lines 2..N+1: Line i+1 contains an integer stall location, xi

    Output

    * Line 1: One integer: the largest minimum distance

    Sample Input

    5 3
    1
    2
    8
    4
    9

    Sample Output

    3

    Hint

    OUTPUT DETAILS: 

    FJ can put his 3 cows in the stalls at positions 1, 4 and 8, resulting in a minimum distance of 3. 

    Huge input data,scanf is recommended.


    check(d)=可以安排所有的牛的位置使得最近的两头牛的距离都不小于d

    求满足check(d)的最大的d的值。


    #include <iostream>
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    const int maxn=1e5+10;
    int house[maxn];
    int n,m;
    const int inf=99999999;
    bool check(int d)
    {
        int last=0;
        for(int i=1;i<m;i++)
        {
            int crt=last+1;
            while(crt<n&&house[crt]-house[last]<d)
            {
                crt++;
            }
            if(crt==n)return false;
            last=crt;
        }
        return true;
    }
    void solve()
    {
        sort(house,house+n);
        int lb=0,ub=inf;
        while(ub-lb>1)
        {
            int mid=(ub+lb)/2;
            if(check(mid))
                lb=mid;
            else
                ub=mid;
        }
        printf("%d
    ",lb);
    }
    
    int main()
    {
        cin>>n>>m;
        for(int j=0;j<n;j++)
            scanf("%d",&house[j]);
        solve();
        return 0;
    }
    

  • 相关阅读:
    linux发行版 以及 包管理方式
    [Linux: 使用心得]ArchLinux下安装Gnome3
    Delphi中WebService服务
    再谈企业架构业务架构
    SQL优化使用 EXISTS 代替 IN 和 inner join来选择正确的执行计划
    数据库设计使用上述四种模式的一般原则(转)
    SQL server 2005 日志恢复和审计工具
    Oracle 10g 进程体系学习总结
    查看SQL Server的事务日志
    数据库设计继承模式(转)
  • 原文地址:https://www.cnblogs.com/bryce1010/p/9387410.html
Copyright © 2011-2022 走看看