zoukankan      html  css  js  c++  java
  • HDU 多校对抗赛 C Triangle Partition

    Triangle Partition

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 132768/132768 K (Java/Others)
    Total Submission(s): 304    Accepted Submission(s): 170
    Special Judge


    Problem Description
    Chiaki has 3n points p1,p2,,p3n. It is guaranteed that no three points are collinear.
    Chiaki would like to construct n disjoint triangles where each vertex comes from the 3n points.
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
    The first line contains an integer n (1n1000) -- the number of triangle to construct.
    Each of the next 3n lines contains two integers xi and yi (109xi,yi109).
    It is guaranteed that the sum of all n does not exceed 10000.
     
    Output
    For each test case, output n lines contain three integers ai,bi,ci (1ai,bi,ci3n) each denoting the indices of points the i-th triangle use. If there are multiple solutions, you can output any of them.
     
    Sample Input
    1 1 1 2 2 3 3 5
     
    Sample Output
    1 2 3

     题意:给你3*n个点,求你构造出的n个三角形的id位置(之前输入的位置)是哪些 ,三角形不能重合

    题解:按照x轴排序,然后依次输出就行,注意只能用scanf输入,不然会T

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 1e4+5;
    struct node{
      int x,y,id;
      bool operator < (const node & a)const{
        return x<a.x;
      }
    }p[maxn];
    int main(int argc, char const *argv[]) {
      int T;
      scanf("%d",&T);
      while(T--){
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n*3;i++){
          scanf("%d %d",&p[i].x,&p[i].y);
          p[i].id=i;
        }
        sort(p+1,p+n*3+1);
        for(int i=1;i<=n*3;i+=3){
          printf("%d %d %d
    ",p[i].id,p[i+1].id,p[i+2].id);
        }
      }
      return 0;
    }
    每一个不曾刷题的日子 都是对生命的辜负 从弱小到强大,需要一段时间的沉淀,就是现在了 ~buerdepepeqi
  • 相关阅读:
    路由
    更改HTTP头信息
    laravel 笔记
    laraven安装记录
    虚拟机Centos设置静态IP
    关于正向代理,反向代理,负载均衡的个人理解
    exce族函数详解
    【C】多线程编程笔记
    【转】Linux C 网络编程——TCP套接口编程
    MySQL 用户管理及权限管理
  • 原文地址:https://www.cnblogs.com/buerdepepeqi/p/9358211.html
Copyright © 2011-2022 走看看