zoukankan      html  css  js  c++  java
  • 推荐算法

    ---恢复内容开始---

    1.基于人口统计学的推荐

    根据系统用户的基本信息发现用户的相关程度,然后将相似用户喜爱的其他物品推荐给当前用户

    2.基于内容的推荐

    根据推荐物品或内容的元数据,发现物品或者内容的相关性,然后基于用户以往的喜好记录,推荐用户相似的物品

    3.基于关联规则的推荐

    首要目标是挖掘关联规则,也就是那些同时被很多用户购买的物品集合,这些物品可以相互进行推荐。目前关联规则算法主要从apriori和fp-growth两个算法发展演变而来

    4.基于协同过滤的推荐

    这种算法基于一个“物以类聚,人以群分”的假设,喜欢相同物品的用户更有可能具有相同的兴趣

      4.1基于用户的推荐

      根据所有用户对物品或者信息的偏好(评分),发现与当前用户口味和偏好相似的“邻居”用户群,在一般的应用中采用计算“K-Nearest Neighboor ”的算法,然后,基于这K个邻居的历史偏好信息,为当前用户进行推荐

      4.2基于物品的推荐

      使用所有用户对物品或者信息的偏好(评分),发现物品和物品之间的相似度,然后根据用户的历史偏好信息,将类似的物品推荐给用户

    ---恢复内容结束---

  • 相关阅读:
    最大熵模型中的数学推导
    最大似然估计总结
    减压放松的一些网站
    决策树
    【转】贝叶斯分类干货
    【转】数学之美番外篇:平凡而又神奇的贝叶斯方法
    信号量与并发控制
    枚举与字符串映射
    Block与参数
    Sublime Text 小计
  • 原文地址:https://www.cnblogs.com/bupt2016/p/8328140.html
Copyright © 2011-2022 走看看