zoukankan      html  css  js  c++  java
  • 数列篇之三

     这一篇说下第二种特征数列,等比数列,同样我们也应该知道它的”基本性质”,“扩充性质”和“判定方法”。

    一:基本性质

         1:通项公式:         an=a1qn-1

         2:  前n项和公式:   Sn= a1(1-qn)/(1-q)

    二: 判定方法

        1:  an+1/an=q (q是常数)          =>    {an}是等比数列。

        2:an=cqn                             =>    {an}是等比数列。

        3:  an+12=an*an+2                =>    {an}是等比数列。

    三:扩充性质   

         1:    an=am*qn-m;

         2:   若m+n=p+q 则 aman=apaq;

         3:   若{an}是等比数列,若每隔k项取出一项,那么取得的新数列仍是等比数列。

                                         比如: k=3时 a1,a4,a7。

         4: 若{an}是等比数列,则arar+1, ar+2ar+3, ar+4ar+5仍然成等比数列。

                                         比如:r=1时  则数列 a1a2,  a3a4,  a5a6成等比数列。

         5:  若{an}是等比数列,则ar+ar+1,   ar+s+ar+s+1,   ar+2s+ar+2s+1 仍成等比数列。

                                         比如:r=1,s=10 则数列 a1+a2, a11+a12, a21+a22成等比数列。

         6:  若{an}是等比数列,Sn是前n项和,则Sk,S2k-Sk,S3k-S2k仍成等比数列,公比为qk

    四:几种模型问题

        1: 我们知道an/an-1=q(常数)时就认为{an}是等比数列,当q=bn时该如何处理,其实模型为an/an-1=bn

              证明:    an/a1=(an/an-1)*(an-1/an-2)*(an-2/an-3)....*(a2/a1)

                    =>   an/a1=bn*bn-1*bn-2......b1

                    =>   an=a1*(b1b2b3...bn)

                   则:          

        2: 当数列的递推模型为an=b1an-1+b2an-2,可以看出我们现在要研究的是an,  an-1,  an-2之间的递归关系。

            这种模型可以瞬间秒杀“斐波那契数列问题”。

           求解过程如下:

           ①:  将an,an-1,an-2替换成x2,x,1

                  则得 x2=b1x+b2,该方程也就是{an}的二阶特征方程,然后解出特征根x1,x2

           ②: 

                  然后将a1,a2代入an后得到一组二元一次方程,求出c1,c2,最后得到an的通项公式。

    五:几个小实际应用 

         1: 斐波那契问题 

               具体细节就不说了,我们直接看它的递归公式,当a1=1,a2=1, an=an-1+an-2

    解答: 我们用特征方程

             首先将an,an-1,an-2替换成x2,x,1,则得到{an} 的一个二阶特征方程为:

             x2=x+1   ①

             由①得(求根公式)

                            x1=(1-√5)/2  

                            x2=(1+√5)/2

            因为x1!=x2,则

                           an=c1[(1-√5)/2]n+c2[(1+√5)/2]n   ②

             又因为a1=a2=1,则

                           c1[(1-√5)/2]+c2[(1+√5)/2]=1        ③

                           c1[(1-√5)/2]2+c2[(1+√5)/2]2=1     ④

             求解方程得

                         c1=-(√5/5)

                         c2=(√5/5)

             将c1,c2代入②式可得

           an= (-(√5/5)[(1-√5)/2])n+(√5/5)*[(1+√5)/2]n

  • 相关阅读:
    cf1100 F. Ivan and Burgers
    cf 1033 D. Divisors
    LeetCode 17. 电话号码的字母组合
    LeetCode 491. 递增的子序列
    LeetCode 459.重复的子字符串
    LeetCode 504. 七进制数
    LeetCode 3.无重复字符的最长子串
    LeetCode 16.06. 最小差
    LeetCode 77. 组合
    LeetCode 611. 有效三角形个数
  • 原文地址:https://www.cnblogs.com/bytebull/p/7976143.html
Copyright © 2011-2022 走看看