zoukankan      html  css  js  c++  java
  • PAT 甲级 1046 Shortest Distance (20 分)(前缀和,想了一会儿)

    1046 Shortest Distance (20 分)
     

    The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains an integer N (in [3]), followed by N integer distances D1​​ D2​​ ⋯ DN​​, where Di​​is the distance between the i-th and the (-st exits, and DN​​ is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (≤), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 1.

    Output Specification:

    For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.

    Sample Input:

    5 1 2 4 14 9
    3
    1 3
    2 5
    4 1
    

    Sample Output:

    3
    10
    7

    题意:

      给出一个环形的高速公路,其中有N个出口,第Di​个出口是i到i-1的距离,而DN是N到1 的距离。给出任意两个出口,计算两者的最短距离。

    题解:

    显而易见,这是一个循环队列,计算距离需要考虑两个方向,但是如果直接遍历的话,时间复杂度为O(n2) O(n^2)O(n 2)这个数据量会超时(第三个测试点),所以我们需要考虑,如何优化这个距离计算过程。不妨考虑,计算每个出口两个方向的累加距离,这样计算两者之间的距离的时候,直接做加减即可,时间复杂度为O(n) O(n)O(n)。

    AC代码:

    #include<iostream>
    #include<algorithm>
    #include<vector>
    #include<queue>
    #include<map>
    #include<string>
    #include<cstring>
    using namespace std;
    int n;
    int a[100005];
    int s1[100005];
    int s2[100005];
    int main()
    {
        cin>>n;
        memset(s1,0,sizeof(s1));
        memset(s1,0,sizeof(s2));
        for(int i=1;i<=n;i++){
            cin>>a[i];
            s1[i+1]=s1[i]+a[i];
        }
        for(int i=1;i<=n;i++){
            s2[i+1]=s2[i]+a[n-i+1];
        }
        /*for(int i=1;i<=n;i++){
            cout<<i<<" s1 "<<s1[i]<<endl;
            cout<<i<<" s2 "<<s2[i]<<endl;
        }*/
        int m;
        int u,v;
        cin>>m;
        for(int i=1;i<=m;i++){
            cin>>u>>v;
            if(u>v){
                int temp=v;
                v=u;
                u=temp;
            }
            cout<<min(s1[v]-s1[u],s2[n+2-v]+s1[u])<<endl;//两个方向选最大
        }
        return 0;
    }
  • 相关阅读:
    第7章例7-12
    第7章例7-11
    第7章例7-9
    第7章例7-8
    第7章例7-7
    第7章例7-6
    第7章例7-5
    第7章例7-4
    第7章例7-3
    第7章例7-2
  • 原文地址:https://www.cnblogs.com/caiyishuai/p/11456499.html
Copyright © 2011-2022 走看看