zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 72 (Rated for Div. 2)D. Coloring Edges(想法)

    D. Coloring Edges

    time limit per test

    1 second

    memory limit per test

    256 megabytes

    input

    standard input

    output

    standard output

    You are given a directed graph with nn vertices and mm directed edges without self-loops or multiple edges.

    Let's denote the kk-coloring of a digraph as following: you color each edge in one of kk colors. The kk-coloring is good if and only if there no cycle formed by edges of same color.

    Find a good kk-coloring of given digraph with minimum possible kk.

    Input

    The first line contains two integers nn and mm (2≤n≤50002≤n≤5000, 1≤m≤50001≤m≤5000) — the number of vertices and edges in the digraph, respectively.

    Next mm lines contain description of edges — one per line. Each edge is a pair of integers uu and vv (1≤u,v≤n1≤u,v≤n, u≠vu≠v) — there is directed edge from uu to vv in the graph.

    It is guaranteed that each ordered pair (u,v)(u,v) appears in the list of edges at most once.

    Output

    In the first line print single integer kk — the number of used colors in a good kk-coloring of given graph.

    In the second line print mm integers c1,c2,…,cmc1,c2,…,cm (1≤ci≤k1≤ci≤k), where cici is a color of the ii-th edge (in order as they are given in the input).

    If there are multiple answers print any of them (you still have to minimize kk).

    Examples

    input

    Copy

    4 5
    1 2
    1 3
    3 4
    2 4
    1 4
    

    output

    Copy

    1
    1 1 1 1 1 
    

    input

    Copy

    3 3
    1 2
    2 3
    3 1
    

    output

    Copy

    2
    1 1 2 

    看到群里的解法

    就是先用类似拓扑排序的思想

    先判断一下是否存在环

    如果存在环就是大☞小为1 反之为2

    因为是一个环所有肯定会有两种情况

    #include<bits/stdc++.h>
    using namespace std;
    vector<int>ve[5005];
    int n,m;
    int IN[5005];
    int tuopu()
    {
        queue<int>q;
        int ans=0;
        for(int i=1; i<=n; i++)
        {
            if(IN[i]==0)
            {
                q.push(i);
                ans++;
            }
        }
        while(q.size())
        {
            int u=q.front();
            q.pop();
            for(auto v:ve[u])
            {
                IN[v]--;
                if(IN[v]==0)
                {
                    q.push(v);
                    ans++;
                }
            }
        }
        return ans==n;
    }
    int tmp1[5005];
    int tmp2[5005];
    int main()
    {
        scanf("%d%d",&n,&m);
        memset(IN,0,sizeof(IN));
        for(int i=1; i<=m; i++)
        {
            scanf("%d%d",&tmp1[i],&tmp2[i]);
            ve[tmp1[i]].push_back(tmp2[i]);
            IN[tmp2[i]]++;
        }
        if(tuopu())
        {
            printf("1
    ");
            for(int i=1; i<=m; i++)
            {
                printf("1%s",i==m?"
    ":" ");
            }
        }
        else
        {
            printf("2
    ");
            for(int i=1; i<=m; i++)
            {
                if(tmp1[i]>tmp2[i])
                {
                    printf("1%s",i==m?"
    ":" ");
                }
                else
                {
                    printf("2%s",i==m?"
    ":" ");
                }
            }
        }
    
        return 0;
    }
    
  • 相关阅读:
    常用Git代码托管服务分享
    .NET中操作IPicture、IPictureDisp
    Git学习笔记与IntelliJ IDEA整合
    螺旋队列问题
    杂题3道
    .NET 配置文件简单使用
    C++之Effective STL
    不容易理解的 lock 和 merge
    状态模式
    观察者模式
  • 原文地址:https://www.cnblogs.com/caowenbo/p/11852208.html
Copyright © 2011-2022 走看看