zoukankan      html  css  js  c++  java
  • 葡萄酒分类

    import numpy as np
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
    from sklearn.neural_network import MLPClassifier
    from sklearn.metrics import classification_report,confusion_matrix
    import pandas as pd
    
    #读取数据进行处理
    data = pd.read_csv('wine_data.csv',names = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n'])  #读取数据指定列名
    x_data = data[['b','c','d','e','f','g','h','i','j','k','l','m','n']]   #获取数据集
    y_data = data['a'] #获取数据集的真实值
    print(x_data.shape)
    print(y_data.shape)
    
    #数据拆分  %30的测试集,70%的训练集
    x_train,x_test,y_train,y_test = train_test_split(x_data, y_data,test_size = 0.3)
    
    #数据标准化  特征缩放
    scaler = StandardScaler()
    x_train = scaler.fit_transform(x_train)
    x_test = scaler.fit_transform(x_test)
    
    # 构建模型,1个隐藏层,隐藏层100个神经元.训练500周期
    mlp = MLPClassifier(hidden_layer_sizes=(100), max_iter=500)
    mlp.fit(x_train, y_train)
    
    predictions = mlp.predict(x_test)
    print(classification_report(y_test, predictions))
    
    print(confusion_matrix(y_test,predictions))

  • 相关阅读:
    java Math类方法使用
    线性逻辑回归与非线性逻辑回归pytorch+sklearn
    Java学习方向
    ubuntu16.04安装Anaconda+Pycharm+Pytorch
    迁移学习resnet
    简单的CNN图像分类datasets.MNIST/FashionMNIST
    pytorch学习2
    tools/build.c
    zBoot/Makefile
    tools/version.c
  • 原文地址:https://www.cnblogs.com/carlber/p/10154057.html
Copyright © 2011-2022 走看看