import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.metrics import classification_report,confusion_matrix import pandas as pd #读取数据进行处理 data = pd.read_csv('wine_data.csv',names = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n']) #读取数据指定列名 x_data = data[['b','c','d','e','f','g','h','i','j','k','l','m','n']] #获取数据集 y_data = data['a'] #获取数据集的真实值 print(x_data.shape) print(y_data.shape) #数据拆分 %30的测试集,70%的训练集 x_train,x_test,y_train,y_test = train_test_split(x_data, y_data,test_size = 0.3) #数据标准化 特征缩放 scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.fit_transform(x_test) # 构建模型,1个隐藏层,隐藏层100个神经元.训练500周期 mlp = MLPClassifier(hidden_layer_sizes=(100), max_iter=500) mlp.fit(x_train, y_train) predictions = mlp.predict(x_test) print(classification_report(y_test, predictions)) print(confusion_matrix(y_test,predictions))