zoukankan      html  css  js  c++  java
  • 文本的简单表示 boolean representation count-based Representation tf-idf python实现

    1. Boolean representation

    word_dict = ['我们', '又', '去', '爬山', '今天', '你们', '昨天', '跑步']
    def booleanRepresent(user_input):
        count = {}
        for word in word_dict:
            count[word] = 0      
        for word in user_input:
            if word in count:
                count[word] = 1 
            else:
                count[word] = 0 
        return count 
    
    user_input1 = ['我们', '今天', '去', '爬山']
    print(booleanRepresent(user_input1))
    user_input2 = ['你们', '又', '去', '爬山', '又', '去', '跑步']
    print(booleanRepresent(user_input2))  
    

      输出结果:

    {'我们': 1, '又': 0, '去': 1, '爬山': 1, '今天': 1, '你们': 0, '昨天': 0, '跑步': 0}
    {'我们': 0, '又': 1, '去': 1, '爬山': 1, '今天': 0, '你们': 1, '昨天': 0, '跑步': 1}


    2. Count-based Representation
    word_dict = ['我们', '又', '去', '爬山', '今天', '你们', '昨天', '跑步'] 
    user_input2 = ['你们', '又', '去', '爬山', '又', '去', '跑步']
    def countRepresent(user_input):
        count = {}
        for word in word_dict:
            count[word] = 0 
            
        for word in user_input2:
            if word in count:
                count[word] += 1 
            else:
                count[word] = 0 
        return count 
    countRepresent(user_input2)

      输出结果:

    {'我们': 0, '又': 2, '去': 2, '爬山': 1, '今天': 0, '你们': 1, '昨天': 0, '跑步': 1}
    

     3. Tf-Idf表示

    import math 
    
    word_dict = ['今天', '上', 'NLP', '课程', '的', '有', '意思', '数据', '也']
    text1 = ['今天', '上', 'NLP', '课程']
    text2 = ['今天', '的', '课程', '也', '有', '意思']
    text3 = ['数据', '课程', '也', '有', '意思']
    document = [text1, text2, text3]
    
    def getIDF(word_dict, document):
        idf_of_word = {}
        for word in word_dict:
            w_in_f = 0.0 
            for text in document:
                if word in text:
                    w_in_f += 1.0 
            idf_of_word[word] = math.log(len(document) / w_in_f) 
        return idf_of_word 
    
    print(getIDF(word_dict, document))
     
    

       IDF输出结果:

    {'今天': 0.4054651081081644, '上': 1.0986122886681098, 'NLP': 1.0986122886681098, '课程': 0.0, '的': 1.0986122886681098, '有': 0.4054651081081644, '意思': 0.4054651081081644, '数据': 1.0986122886681098, '也': 0.4054651081081644}
    

      

    def getTfIdf(word_dict, text):
        tf_words = {}
        for w in word_dict:
            if w in text1:
                tf_words[w] = text1.count(w)
            else:
                tf_words[w] = 0  
            tf_idf_of_file[w] = tf_words[w] * idf_of_word[w] 
        return tf_idf_of_file 
        
    print(tf_idf_of_file)
    

      Tf-Idf输出结果:

    {'今天': 0.4054651081081644, '上': 1.0986122886681098, 'NLP': 1.0986122886681098, '课程': 0.0, '的': 0.0, '有': 0.0, '意思': 0.0, '数据': 0.0, '也': 0.0}
    

      

     

     
  • 相关阅读:
    强大的异或运算-深度好文
    40-3Sum Closest
    39-Remove Duplicates from Sorted Array
    谈谈AI
    38- Majority Element
    37-Invert Binary Tree
    36-Same Tree
    35-Remove Element
    34. Swap Nodes in Pairs
    33. Implement strStr()
  • 原文地址:https://www.cnblogs.com/carlber/p/12153395.html
Copyright © 2011-2022 走看看