zoukankan      html  css  js  c++  java
  • POJ 2533 Longest Ordered Subsequence(单调递增子序列)

    Longest Ordered Subsequence
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 35037   Accepted: 15372

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4
    大致题意:给出一个数列,求最大不下降子序列的长度。

    思路:最优结构:dp[i]以第i个元素为子序列最后一个元素的LIS的长度。

    状态转移方程:dp[1]=1;dp[i]=max(dp[j] | j<i && m[j] < m[i] ) +1 ;i>1

     1 #include<iostream>
     2 #include<cstdio>
     3 using namespace std;
     4 const int inf = 10001;
     5 const int MAX = 1005;
     6 int binary_search(int s[],int digit,int length)
     7 {
     8     int left=0,right=length,mid;
     9     while(right!=left)
    10     {
    11         mid=(left+right)/2;
    12         if(digit==s[mid])
    13             return mid;
    14         else if(digit<s[mid])
    15             right=mid;
    16         else
    17             left=mid+1;
    18     }
    19     return left;
    20 }
    21 int main()
    22 {
    23     int n,i,j;
    24     while(~scanf("%d",&n))
    25     {
    26         int a[MAX];
    27         int s[MAX];
    28         for(i=1;i<=n;i++)
    29             scanf("%d",&a[i]);
    30         s[0]=-1;
    31         int len=1;
    32         for(i=1;i<=n;i++)
    33         {
    34             s[len]=inf;
    35             j=binary_search(s,a[i],len);
    36             if(j==len)
    37                 len++;
    38             s[j]=a[i];
    39         }
    40         printf("%d
    ",len-1);
    41     }
    42     return 0;
    43 }
    
    
    
     
  • 相关阅读:
    004_列表list操作
    003_字符串str的操作
    002_python基础语录
    求哈夫曼树的编码
    Python笔记(一)——打印输出
    python基础一 day33 验证客户端的合法性
    python基础一 day32 复习
    python基础一 day30 网络编程
    python基础一 day29 logging
    python基础一 day29 学习方法(课前谈心)
  • 原文地址:https://www.cnblogs.com/caterpillarofharvard/p/4226329.html
Copyright © 2011-2022 走看看