zoukankan      html  css  js  c++  java
  • Kmeanns图片压缩

    from sklearn.datasets import load_sample_image#先导入数据包
    china = load_sample_image("china.jpg")#从包中拿出china那那张图
    print(china.shape)
    china
    array([[[174, 201, 231],
            [174, 201, 231],
            [174, 201, 231],
            ...,
            [250, 251, 255],
            [250, 251, 255],
            [250, 251, 255]],
    
           [[172, 199, 229],
            [173, 200, 230],
            [173, 200, 230],
            ...,
            [251, 252, 255],
            [251, 252, 255],
            [251, 252, 255]],
    
           [[174, 201, 231],
            [174, 201, 231],
            [174, 201, 231],
            ...,
            [252, 253, 255],
            [252, 253, 255],
            [252, 253, 255]],
    
           ...,
    
           [[ 88,  80,   7],
            [147, 138,  69],
            [122, 116,  38],
            ...,
            [ 39,  42,  33],
            [  8,  14,   2],
            [  6,  12,   0]],
    
           [[122, 112,  41],
            [129, 120,  53],
            [118, 112,  36],
            ...,
            [  9,  12,   3],
            [  9,  15,   3],
            [ 16,  24,   9]],
    
           [[116, 103,  35],
            [104,  93,  31],
            [108, 102,  28],
            ...,
            [ 43,  49,  39],
            [ 13,  21,   6],
            [ 15,  24,   7]]], dtype=uint8)
    

      

    import matplotlib.pyplot as plt#导入画图的包
    plt.imshow(china)#imshow函数
    plt.show()#显示
    

      

    plt.imshow(china[:,:,0])#所有行,列,按第一的颜色排列
    plt.show()
    

      

    plt.imshow(china[:,:,0],plt.cm.gray)#添加灰色
    plt.show()
    

      

     

      

    import sys
    sys.getsizeof(china)
    819968
    image=china[::3,::3]#将间隔扩大为3*3倍
    image.shape
    plt.imshow(image)
    plt.show()
    

      

    x=image.reshape(-1,3)
    

      

    from sklearn.cluster import KMeans#导入kmeans包
    import numpy as np
    model=KMeans(n_clusters=64)#设中心点为64
    b=model.fit_predict(x)#预测处理
    a=model.cluster_centers_#求均值找中心点
    new_image=a[b]#靠近的聚合
    new_image=new_image.reshape(image.shape)
    plt.imshow(new_image.astype(np.uint8))#改成int
    plt.show()
    

      

    import sys
    import matplotlib.image as img
    sys.getsizeof(new_image)
    

      

    128
    #图片保存
    import matplotlib.image as img
    img.imsave('e://01.jpg',china)
    sd=img.imread('e://01.jpg')#导入图片数据
    sd.shape
    plt.imshow(sd)
    plt.show()

    pb=8/20
    pa=1/2
    pba=7/10
    pab=(7/10*1/2)/(8/20)
    print(pab)
    cc=1-pab
    print(cc)
    Python 3.6.6 (v3.6.6:4cf1f54eb7, Jun 27 2018, 02:47:15) [MSC v.1900 32 bit (Intel)] on win32
    Type "copyright", "credits" or "license()" for more information.
    >>> 
    ================== RESTART: C:/Users/lenovo/Desktop/sff.py ==================
    >>> 
    ================== RESTART: C:/Users/lenovo/Desktop/sff.py ==================
    0.8749999999999999
    >>> 
    ================== RESTART: C:/Users/lenovo/Desktop/sff.py ==================
    0.8749999999999999
    0.1250000000000001
    >>> 
    

      

  • 相关阅读:
    性能测试流程
    N种自动化测试框架(包含自动化和性能,总有一款适合你)
    自动化测试框架:jmeter + maven+ jenkins
    oracle中删除表:drop、delete、truncate
    SpringBoot开发mockserver及生成swagger接口文档
    五步法颈椎病自我按摩图解
    自动化必备:自动化持续集成环境搭建(上):git + maven + jenkins
    玩转jmeter:beanshell必备技能
    EFK-2:ElasticSearch高性能高可用架构
    MySQL5.7之在线DDL不会锁表
  • 原文地址:https://www.cnblogs.com/cc013/p/9954710.html
Copyright © 2011-2022 走看看