zoukankan      html  css  js  c++  java
  • hdu 1700 Points on Cycle(坐标旋转)

    http://acm.hdu.edu.cn/showproblem.php?pid=1700

    Points on Cycle

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1567    Accepted Submission(s): 570


    Problem Description
    There is a cycle with its center on the origin.
    Now give you a point on the cycle, you are to find out the other two points on it, to maximize the sum of the distance between each other
    you may assume that the radius of the cycle will not exceed 1000.
     
    Input
    There are T test cases, in each case there are 2 decimal number representing the coordinate of the given point.
     
    Output
    For each testcase you are supposed to output the coordinates of both of the unknow points by 3 decimal places of precision 
    Alway output the lower one first(with a smaller Y-coordinate value), if they have the same Y value output the one with a smaller X. 

    NOTE
    when output, if the absolute difference between the coordinate values X1 and X2 is smaller than 0.0005, we assume they are equal.
     
    Sample Input
    2
    1.500 2.000
    563.585 1.251
     
    Sample Output
    0.982 -2.299 -2.482 0.299
    -280.709 -488.704 -282.876 487.453
     
     
    -----------------------------------------------------------------------
    坐标旋转公式:x1=x*cosα - y*sinα
                       y1=y*cosα + x*sinα
     其中,x,y表示物体相对旋转点旋转角度α之前的坐标;x1,y1表示物体旋转α角后相对于旋转点的坐标
    具体证明去找书吧
     
    还有,圆周率pi要开到3.14159265才可以
     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <string.h>
     4 #include <math.h>
     5 #include <algorithm>
     6 #define eps 0.0005
     7 #define pi 3.14159265
     8 int main()
     9 {
    10     int n,m,i,j;
    11     scanf("%d",&n);
    12     while(n--)
    13     {
    14         double x1,y1,x2,y2,x3,y3;
    15         double Q1=pi*2/3,Q2=pi*4/3;
    16         scanf("%lf%lf",&x1,&y1);
    17         x2=x1*cos(Q1)-y1*sin(Q1);
    18         y2=y1*cos(Q1)+x1*sin(Q1);
    19         x3=x1*cos(Q2)-y1*sin(Q2);
    20         y3=y1*cos(Q2)+x1*sin(Q2);//printf("%.3lf %.3lf %.3lf %.3lf
    ",x2,y2,x3,y3);
    21         if(fabs(y2-y3)<eps)
    22         {
    23             if((x2-x3)>eps)
    24                 printf("%.3lf %.3lf %.3lf %.3lf
    ",x3,y3,x2,y2);
    25             else
    26             {
    27                 printf("%.3lf %.3lf %.3lf %.3lf
    ",x2,y2,x3,y3);
    28             }
    29         }
    30         else if((y2-y3)>eps)
    31             printf("%.3lf %.3lf %.3lf %.3lf
    ",x3,y3,x2,y2);
    32         else
    33             printf("%.3lf %.3lf %.3lf %.3lf
    ",x2,y2,x3,y3);
    34     }
    35     return 0;
    36 }
     

    任意点(x,y),绕一个坐标点(rx0,ry0)逆时针旋转a角度后的新的坐标设为(x0, y0),有公式:

        x0= (x - rx0)*cos(a) - (y - ry0)*sin(a) + rx0 ;

        y0= (x - rx0)*sin(a) + (y - ry0)*cos(a) + ry0 ;

  • 相关阅读:
    基于Tire树和最大概率法的中文分词功能的Java实现
    通过 Spring RestTemplate 调用带请求体的 Delete 方法(Delete With Request Body)
    《高效能程序员的修炼》之译者序(本书将于7月初上市,人民邮电出版社)
    JVM类加载过程学习总结
    Web安全之Cookie劫持
    2016第40周五
    年轻By塞缪尔·厄尔曼
    2016第40周三
    2016第40周二
    果断歌
  • 原文地址:https://www.cnblogs.com/ccccnzb/p/3904864.html
Copyright © 2011-2022 走看看