zoukankan      html  css  js  c++  java
  • cf

    Iahub and Sorin are the best competitive programmers in their town. However, they can't both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.

    You're given an (1-based) array a with n elements. Let's define function f(i, j) (1 ≤ i, j ≤ n) as (i - j)2 + g(i, j)2. Function g is calculated by the following pseudo-code:


    int g(int i, int j) {
    int sum = 0;
    for (int k = min(i, j) + 1; k <= max(i, j); k = k + 1)
    sum = sum + a[k];
    return sum;
    }

    Find a value mini ≠ j  f(i, j).

    Probably by now Iahub already figured out the solution to this problem. Can you?

    Input

    The first line of input contains a single integer n (2 ≤ n ≤ 100000). Next line contains n integers a[1], a[2], ..., a[n] ( - 104 ≤ a[i] ≤ 104).

    Output

    Output a single integer — the value of mini ≠ j  f(i, j).

    Example
    Input
    4
    1 0 0 -1
    Output
    1
    Input
    2
    1 -1
    Output
    2

    题目分析 : 首先要对公式进行变形 , 所给的函数就是让求一个前缀和,那么就是由公式的形式就可得到 (i-j)^2 + (sum[i]-sum[j])^2 , 那么不就是转换成一个平面上的最近两点的距离的平方了吗?

    代码示例 :
    const int eps = 1e5+5;
    const double pi = acos(-1.0);
    const int inf = 1<<29;
    #define Max(a,b) a>b?a:b
    #define Min(a,b) a>b?b:a
    #define ll long long
    
    struct node
    {
        ll x, y;
    }pre[eps], pt[eps];
    
    bool cmpxy(node a, node b){
        if (a.x == b.y) return a.y < b.y;
        else return a.x < b.x;
    }
    
    ll dis(ll i, ll j){
        return (pre[i].x-pre[j].x)*(pre[i].x-pre[j].x)+(pre[i].y-pre[j].y)*(pre[i].y-pre[j].y);
    }
    
    ll dis2(ll i, ll j){
        return (pt[i].x-pt[j].x)*(pt[i].x-pt[j].x)+(pt[i].y-pt[j].y)*(pt[i].y-pt[j].y);
    }
    
    bool cmpy(node a, node b){
        if (a.y == b.y) return a.x < b.x;
        else return a.y < b.y;
    }
    
    ll close_pair(ll l, ll r){
        ll d = 999999999999999;
        if (l == r) return d;
        if (l + 1 == r) return dis(l, r);
        ll m = (l + r) >> 1;
        ll d1 = close_pair(l, m);
        ll d2 = close_pair(m+1, r);
        d = min(d1, d2);
        ll k = 0;
        for(ll i = l; i <= r; i++){
            if ((pre[i].x-pre[m].x)*(pre[i].x-pre[m].x) < d) pt[k++] = pre[i];
        }
        sort(pt, pt+k, cmpy);
        
        for(ll i = 0; i < k; i++){
            for(ll j = i+1; j < k && (pt[j].y-pt[i].y)*(pt[j].y-pt[i].y) < d; j++){
                ll dd = dis2(i, j);
                d = min(dd, d);
            }
        }
        return d;
    }
    
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        ll n, x;
        
        cin >> n;
        ll sum = 0;
        for(ll i = 1; i <= n; i++){
            scanf("%lld", &x);
            sum += x;
            pre[i].x = i; pre[i].y = sum;
        }
        sort(pre+1, pre+1+n, cmpxy);
        printf("%lld
    ", close_pair(1, n));
        return 0;
    }
    
    东北日出西边雨 道是无情却有情
  • 相关阅读:
    leetcode-23-DynamicProgramming-1
    perl-basic-数组操作
    R-data.table
    perl-basic-分支&循环
    neo4j3.0多数库切换
    Neo4j下载与使用
    python中导入模块的注意点
    python 一个.py文件如何调用另一个.py文件中的类和函数
    理解Python中的类对象、实例对象、属性、方法
    flowable+tomcat部署flowable项目,在线画流程图
  • 原文地址:https://www.cnblogs.com/ccut-ry/p/8376055.html
Copyright © 2011-2022 走看看