zoukankan      html  css  js  c++  java
  • cf

    Iahub and Sorin are the best competitive programmers in their town. However, they can't both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.

    You're given an (1-based) array a with n elements. Let's define function f(i, j) (1 ≤ i, j ≤ n) as (i - j)2 + g(i, j)2. Function g is calculated by the following pseudo-code:


    int g(int i, int j) {
    int sum = 0;
    for (int k = min(i, j) + 1; k <= max(i, j); k = k + 1)
    sum = sum + a[k];
    return sum;
    }

    Find a value mini ≠ j  f(i, j).

    Probably by now Iahub already figured out the solution to this problem. Can you?

    Input

    The first line of input contains a single integer n (2 ≤ n ≤ 100000). Next line contains n integers a[1], a[2], ..., a[n] ( - 104 ≤ a[i] ≤ 104).

    Output

    Output a single integer — the value of mini ≠ j  f(i, j).

    Example
    Input
    4
    1 0 0 -1
    Output
    1
    Input
    2
    1 -1
    Output
    2

    题目分析 : 首先要对公式进行变形 , 所给的函数就是让求一个前缀和,那么就是由公式的形式就可得到 (i-j)^2 + (sum[i]-sum[j])^2 , 那么不就是转换成一个平面上的最近两点的距离的平方了吗?

    代码示例 :
    const int eps = 1e5+5;
    const double pi = acos(-1.0);
    const int inf = 1<<29;
    #define Max(a,b) a>b?a:b
    #define Min(a,b) a>b?b:a
    #define ll long long
    
    struct node
    {
        ll x, y;
    }pre[eps], pt[eps];
    
    bool cmpxy(node a, node b){
        if (a.x == b.y) return a.y < b.y;
        else return a.x < b.x;
    }
    
    ll dis(ll i, ll j){
        return (pre[i].x-pre[j].x)*(pre[i].x-pre[j].x)+(pre[i].y-pre[j].y)*(pre[i].y-pre[j].y);
    }
    
    ll dis2(ll i, ll j){
        return (pt[i].x-pt[j].x)*(pt[i].x-pt[j].x)+(pt[i].y-pt[j].y)*(pt[i].y-pt[j].y);
    }
    
    bool cmpy(node a, node b){
        if (a.y == b.y) return a.x < b.x;
        else return a.y < b.y;
    }
    
    ll close_pair(ll l, ll r){
        ll d = 999999999999999;
        if (l == r) return d;
        if (l + 1 == r) return dis(l, r);
        ll m = (l + r) >> 1;
        ll d1 = close_pair(l, m);
        ll d2 = close_pair(m+1, r);
        d = min(d1, d2);
        ll k = 0;
        for(ll i = l; i <= r; i++){
            if ((pre[i].x-pre[m].x)*(pre[i].x-pre[m].x) < d) pt[k++] = pre[i];
        }
        sort(pt, pt+k, cmpy);
        
        for(ll i = 0; i < k; i++){
            for(ll j = i+1; j < k && (pt[j].y-pt[i].y)*(pt[j].y-pt[i].y) < d; j++){
                ll dd = dis2(i, j);
                d = min(dd, d);
            }
        }
        return d;
    }
    
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        ll n, x;
        
        cin >> n;
        ll sum = 0;
        for(ll i = 1; i <= n; i++){
            scanf("%lld", &x);
            sum += x;
            pre[i].x = i; pre[i].y = sum;
        }
        sort(pre+1, pre+1+n, cmpxy);
        printf("%lld
    ", close_pair(1, n));
        return 0;
    }
    
    东北日出西边雨 道是无情却有情
  • 相关阅读:
    在Xcode5中修改整个项目名
    EFCore的事务和分布式事务的使用
    NET CORE API权限控制之JWT的创建和引用
    NET CORE引用log4net日志文件的应用
    NET CORE在Linux下部署并且用Nginx 做负载均衡(主要说明CentOS)
    Centos 7下安装nginx,使用yum install nginx,提示没有可用的软件包
    Laravel Packages
    Laravel artisan commands
    ExtJs xtype
    ExtJS Complex data binding
  • 原文地址:https://www.cnblogs.com/ccut-ry/p/8376055.html
Copyright © 2011-2022 走看看