zoukankan      html  css  js  c++  java
  • cf

    Iahub and Sorin are the best competitive programmers in their town. However, they can't both qualify to an important contest. The selection will be made with the help of a single problem. Blatnatalag, a friend of Iahub, managed to get hold of the problem before the contest. Because he wants to make sure Iahub will be the one qualified, he tells Iahub the following task.

    You're given an (1-based) array a with n elements. Let's define function f(i, j) (1 ≤ i, j ≤ n) as (i - j)2 + g(i, j)2. Function g is calculated by the following pseudo-code:


    int g(int i, int j) {
    int sum = 0;
    for (int k = min(i, j) + 1; k <= max(i, j); k = k + 1)
    sum = sum + a[k];
    return sum;
    }

    Find a value mini ≠ j  f(i, j).

    Probably by now Iahub already figured out the solution to this problem. Can you?

    Input

    The first line of input contains a single integer n (2 ≤ n ≤ 100000). Next line contains n integers a[1], a[2], ..., a[n] ( - 104 ≤ a[i] ≤ 104).

    Output

    Output a single integer — the value of mini ≠ j  f(i, j).

    Example
    Input
    4
    1 0 0 -1
    Output
    1
    Input
    2
    1 -1
    Output
    2

    题目分析 : 首先要对公式进行变形 , 所给的函数就是让求一个前缀和,那么就是由公式的形式就可得到 (i-j)^2 + (sum[i]-sum[j])^2 , 那么不就是转换成一个平面上的最近两点的距离的平方了吗?

    代码示例 :
    const int eps = 1e5+5;
    const double pi = acos(-1.0);
    const int inf = 1<<29;
    #define Max(a,b) a>b?a:b
    #define Min(a,b) a>b?b:a
    #define ll long long
    
    struct node
    {
        ll x, y;
    }pre[eps], pt[eps];
    
    bool cmpxy(node a, node b){
        if (a.x == b.y) return a.y < b.y;
        else return a.x < b.x;
    }
    
    ll dis(ll i, ll j){
        return (pre[i].x-pre[j].x)*(pre[i].x-pre[j].x)+(pre[i].y-pre[j].y)*(pre[i].y-pre[j].y);
    }
    
    ll dis2(ll i, ll j){
        return (pt[i].x-pt[j].x)*(pt[i].x-pt[j].x)+(pt[i].y-pt[j].y)*(pt[i].y-pt[j].y);
    }
    
    bool cmpy(node a, node b){
        if (a.y == b.y) return a.x < b.x;
        else return a.y < b.y;
    }
    
    ll close_pair(ll l, ll r){
        ll d = 999999999999999;
        if (l == r) return d;
        if (l + 1 == r) return dis(l, r);
        ll m = (l + r) >> 1;
        ll d1 = close_pair(l, m);
        ll d2 = close_pair(m+1, r);
        d = min(d1, d2);
        ll k = 0;
        for(ll i = l; i <= r; i++){
            if ((pre[i].x-pre[m].x)*(pre[i].x-pre[m].x) < d) pt[k++] = pre[i];
        }
        sort(pt, pt+k, cmpy);
        
        for(ll i = 0; i < k; i++){
            for(ll j = i+1; j < k && (pt[j].y-pt[i].y)*(pt[j].y-pt[i].y) < d; j++){
                ll dd = dis2(i, j);
                d = min(dd, d);
            }
        }
        return d;
    }
    
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        ll n, x;
        
        cin >> n;
        ll sum = 0;
        for(ll i = 1; i <= n; i++){
            scanf("%lld", &x);
            sum += x;
            pre[i].x = i; pre[i].y = sum;
        }
        sort(pre+1, pre+1+n, cmpxy);
        printf("%lld
    ", close_pair(1, n));
        return 0;
    }
    
    东北日出西边雨 道是无情却有情
  • 相关阅读:
    mybatis动态查询,模糊查询
    Python 列表
    异步加载实现点赞功能($.load 出现post不支持)
    shiro多账号登录(用户名,手机号,邮箱)
    spring data jpa 级联操作的时候注意事项
    semantic UI 点击按钮自动提交表单原因
    上线日期
    有关弱类型意识、DOM、动态语言与函数式编程
    视频项目时长的存储和程序设计方案---单例模式节省内存空间以及自定义注解
    项目中整合第三方插件与SpringMVC数据格式化关于ip地址
  • 原文地址:https://www.cnblogs.com/ccut-ry/p/8376055.html
Copyright © 2011-2022 走看看