zoukankan      html  css  js  c++  java
  • LCA

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.

    We will ask you to perfrom some instructions of the following form:

    • DIST a b : ask for the distance between node a and node b
      or
    • KTH a b k : ask for the k-th node on the path from node a to node b

    Example:
    N = 6
    1 2 1 // edge connects node 1 and node 2 has cost 1
    2 4 1
    2 5 2
    1 3 1
    3 6 2

    Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6
    DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5)
    KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)

    Input

    The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.

    For each test case:

    • In the first line there is an integer N (N <= 10000)
    • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 100000)
    • The next lines contain instructions "DIST a b" or "KTH a b k"
    • The end of each test case is signified by the string "DONE".

    There is one blank line between successive tests.

    Output

    For each "DIST" or "KTH" operation, write one integer representing its result.

    Print one blank line after each test.

    Example

    Input:
    1
    
    6
    1 2 1
    2 4 1
    2 5 2
    1 3 1
    3 6 2
    DIST 4 6
    KTH 4 6 4
    DONE
    
    Output:
    5
    3
    
    题目分析 : 两种操作,一是查看任意两点间的距离,二是查询从a到b第k个点是什么
    思路分析 : 裸的 LCA ,对于第二种操作,由于倍增中存的就是跳跃的点,所以查看跳到的第几个点也是很容易的
    代码示例 :
    #define ll long long
    const ll maxn = 1e4+5;
    const double pi = acos(-1.0);
    const ll inf = 0x3f3f3f3f;
    
    struct node
    {
        ll to, cost;
        node(ll _to = 0, ll _cost = 0):to(_to), cost(_cost){}
    };
    vector<node>ve[maxn];
    ll dep[maxn];
    ll grand[maxn][20], gw[maxn][20];
    ll N;
    
    void dfs(ll x, ll fa){
        for(ll i = 1; i <= N; i++){
            grand[x][i] = grand[grand[x][i-1]][i-1];
            gw[x][i] = gw[x][i-1] + gw[grand[x][i-1]][i-1];
        }
        for(ll i = 0; i < ve[x].size(); i++){
            ll to = ve[x][i].to;
            ll cost = ve[x][i].cost;
            if (to == fa) continue;
            grand[to][0] = x;
            gw[to][0] = cost;
            dep[to] = dep[x] + 1;
            dfs(to, x); 
        }
    }
    
    ll ans = 0;
    ll a, b, c;
    ll lca(){
        if (dep[a] > dep[b]) swap(a, b);
        
        ans = 0;
        for(ll i = N; i>= 0; i--){ 
            if (dep[a] < dep[b] && dep[grand[b][i]] >= dep[a]) {
                ans += gw[b][i];
                b = grand[b][i]; 
            }
        }
        for(ll i = N; i >= 0; i--){
            if (grand[a][i] != grand[b][i]) {
                ans += gw[a][i];
                ans += gw[b][i];
                a = grand[a][i], b = grand[b][i];
            }
        }
        if (a != b) return grand[a][0];
        else return a;
    }
    
    ll fid(ll a, ll b, ll f) {
        if (dep[a]-dep[f]+1 >= c){
            ll len = dep[a] - c + 1;
            if (len == 0) return 1;
            for(ll i = N; i >= 0; i--){
                if (dep[grand[a][i]] >= len){
                    a = grand[a][i];
                }
            }
            return a;
        }   
        else {
            ll len = c - (dep[a]-dep[f]+1) + dep[f];
            for(ll i = N; i >= 0; i--){
                if (dep[grand[b][i]] >= len){
                    b = grand[b][i];
                }
            }
            return b;
        }
    }
    
    int main() {
        //freopen("in.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        ll t, n;
        char s[20];
        ll p1, p2;
        
        cin >> t;
        while(t--){
            scanf("%lld", &n);
            for(ll i = 1; i <= 10000; i++) ve[i].clear();
            for(ll i = 1; i< n; i++){
                scanf("%lld%lld%lld", &a, &b, &c);    
                ve[a].push_back(node(b, c));
                ve[b].push_back(node(a, c));
            }
            N = floor(log(n)/log(2)); 
            memset(grand, 0, sizeof(grand));
            memset(gw, 0, sizeof(gw));
            dep[1] = 0;
            dfs(1, 1); 
            while(1){
                scanf("%s", s);
                if (s[1] == 'O') break;
                else if (s[1] == 'I') {
                    scanf("%lld%lld", &a, &b);
                    ll f = lca();
                    if (a != b) {
                        ans += gw[a][0];
                        ans += gw[b][0];
                    }   
                    printf("%lld
    ", ans);
                }
                else if (s[1] == 'T'){
                    scanf("%lld%lld%lld", &a, &b, &c);
                    p1 = a, p2 = b;
                    ll f = lca();
                    printf("%lld
    ", fid(p1, p2, f));
                }
            }    
        }
        return 0;
    }
    /*
    10
    8
    1 2 1
    1 3 2
    1 7 3
    2 4 4
    2 5 5
    3 6 6
    7 8 7
    KTH 4 8 3
    DIST
    */
    
    东北日出西边雨 道是无情却有情
  • 相关阅读:
    Map使用总结
    AutoReleasePool使用总结
    UIImage使用总结
    Subversion简明手册--使用hook svn
    转:MyEclipse8.6插件安装方法
    转:myeclipse 8.x 插件安装方法终极总结
    如何通过类找到对应的jar包
    关于更改MYECLIPSE JS 代码背景颜色
    win7 64位系统下 PL/SQL无法连接的问题
    Windows7(x64)下Oracle10g安装
  • 原文地址:https://www.cnblogs.com/ccut-ry/p/8426748.html
Copyright © 2011-2022 走看看