zoukankan      html  css  js  c++  java
  • hdu3338 Kakuro Extension 最大流

    If you solved problem like this, forget it.Because you need to use a completely different algorithm to solve the following one.
    Kakuro puzzle is played on a grid of "black" and "white" cells. Apart from the top row and leftmost column which are entirely black, the grid has some amount of white cells which form "runs" and some amount of black cells. "Run" is a vertical or horizontal maximal one-lined block of adjacent white cells. Each row and column of the puzzle can contain more than one "run". Every white cell belongs to exactly two runs — one horizontal and one vertical run. Each horizontal "run" always has a number in the black half-cell to its immediate left, and each vertical "run" always has a number in the black half-cell immediately above it. These numbers are located in "black" cells and are called "clues".The rules of the puzzle are simple: 

    1.place a single digit from 1 to 9 in each "white" cell
    2.for all runs, the sum of all digits in a "run" must match the clue associated with the "run"

    Given the grid, your task is to find a solution for the puzzle.

    题意:给出一个特殊数独,它给出了连续横向空格和连续纵向空格的和,求数独的任意解。

    将空格和它所在的连续横向空格组和连续纵向空格组建边,横向和纵向的组分别向超级源点和超级汇点建边,这样就可以跑最大流求出每个点的流量,即是答案了。

      1 #include<stdio.h>
      2 #include<string.h>
      3 #include<vector>
      4 #include<queue>
      5 #include<algorithm>
      6 using namespace std;
      7 const int maxm=20500;
      8 const int INF=0x7fffffff;
      9 
     10 struct edge{
     11     int from,to,f;
     12     edge(int a,int b,int c):from(a),to(b),f(c){}
     13 };
     14 
     15 struct dinic{
     16     int s,t,m;
     17     vector<edge>e;
     18     vector<int>g[maxm];
     19     bool vis[maxm];
     20     int cur[maxm],d[maxm];
     21 
     22     void init(int n){
     23         for(int i=1;i<=n;i++)g[i].clear();
     24         e.clear();
     25     }
     26 
     27     void add(int a,int b,int c){
     28         e.push_back(edge(a,b,c));
     29         e.push_back(edge(b,a,0));
     30         m=e.size();
     31         g[a].push_back(m-2);
     32         g[b].push_back(m-1);
     33     }
     34 
     35     bool bfs(){
     36         memset(vis,0,sizeof(vis));
     37         queue<int>q;
     38         q.push(s);
     39         vis[s]=1;
     40         d[s]=0;
     41         while(!q.empty()){
     42             int u=q.front();
     43             q.pop();
     44             for(int i=0;i<g[u].size();i++){
     45                 edge tmp=e[g[u][i]];
     46                 if(!vis[tmp.to]&&tmp.f>0){
     47                     d[tmp.to]=d[u]+1;
     48                     vis[tmp.to]=1;
     49                     q.push(tmp.to);
     50                 }
     51             }
     52         }
     53         return vis[t];
     54     }
     55 
     56     int dfs(int x,int a){
     57         if(x==t||a==0)return a;
     58         int flow=0,f;
     59         for(int& i=cur[x];i<g[x].size();i++){
     60             edge& tmp=e[g[x][i]];
     61             if(d[tmp.to]==d[x]+1&&tmp.f>0){
     62                 f=dfs(tmp.to,min(a,tmp.f));
     63                 tmp.f-=f;
     64                 e[g[x][i]^1].f+=f;
     65                 flow+=f;
     66                 a-=f;
     67                 if(a==0)break;
     68             }
     69         }
     70         if(flow==0)d[x]=-1;
     71         return flow;
     72     }
     73 
     74     void mf(int s,int t){
     75         this->s=s;
     76         this->t=t;
     77         int flow=0;
     78         while(bfs()){
     79             memset(cur,0,sizeof(cur));
     80             flow+=dfs(s,INF);
     81         }
     82     }
     83 };
     84 
     85 char s[105][105][10];
     86 bool vis[105][105];
     87 char ans[105][105];
     88 
     89 int main(){
     90     int n,m;
     91     while(scanf("%d%d",&n,&m)!=EOF){
     92         int i,j,k;
     93         memset(vis,0,sizeof(vis));
     94         dinic d;
     95         d.init(n*m*2+10);
     96         for(i=1;i<=n;i++){
     97             for(j=1;j<=m;j++){
     98                 scanf("%s",s[i][j]+1);
     99                 if(s[i][j][1]=='.'){
    100                     vis[i][j]=1;
    101                     d.add((i-1)*m+j,(i-1)*m+j+n*m,8);
    102                 }
    103                 else ans[i][j]='_';
    104             }
    105         }
    106         int t=n*m*2+1;
    107         for(i=1;i<=n;i++){
    108             for(j=1;j<=m;j++){
    109                 if(!vis[i][j]){
    110                     if(s[i][j][1]!='X'){
    111                         int tmp=(s[i][j][1]-'0')*100+(s[i][j][2]-'0')*10+(s[i][j][3]-'0'),num=(i-1)*m+j;
    112                         for(k=i+1;k<=n&&vis[k][j];k++){
    113                             tmp--;
    114                             d.add(num,(k-1)*m+j,INF);
    115                         }
    116                         d.add(0,num,tmp);
    117                     }
    118                     if(s[i][j][5]!='X'){
    119                         int tmp=(s[i][j][5]-'0')*100+(s[i][j][6]-'0')*10+(s[i][j][7]-'0'),num=(i-1)*m+j+n*m;
    120                         for(k=j+1;k<=m&&vis[i][k];k++){
    121                             tmp--;
    122                             d.add((i-1)*m+k+n*m,num,INF);
    123                         }
    124                         d.add(num,t,tmp);
    125                     }
    126                 }
    127             }
    128         }
    129         d.mf(0,t);
    130         for(i=0;i<d.e.size();i++){
    131             if(d.e[i].from<=n*m&&d.e[i].to>n*m){
    132             int x=d.e[i].from/m+1,y=d.e[i].from%m;
    133             if(y==0){y=m;x--;}
    134                 ans[x][y]=8-d.e[i].f+1+'0';
    135             }
    136         }
    137         for(i=1;i<=n;i++){
    138             for(j=1;j<=m;j++){
    139                 printf("%c",ans[i][j]);
    140                 if(j==m)printf("
    ");
    141                 else printf(" ");
    142             }
    143         }
    144     }
    145     return 0;
    146 }
    View Code
  • 相关阅读:
    如何使用xshell在阿里云服务器上安装tomcat
    如何使用Xshell连接阿里云服务器
    jQuery封装ajax的使用方法
    ES6新增语法
    数组坍塌原理
    JavaScript冒泡排序、选择排序、数组去重
    JS循环嵌套的执行原理
    分栏布局
    如何实现两列固定与一列自适应
    CSS过渡、动画及变形的基本属性与运用
  • 原文地址:https://www.cnblogs.com/cenariusxz/p/6592550.html
Copyright © 2011-2022 走看看