zoukankan      html  css  js  c++  java
  • 神经网络——项目一 手写数字识别

     1 import tensorflow as tf
     2 import numpy as np
     3 from keras.models import Sequential
     4 from keras.layers.core import Dense, Dropout, Activation
     5 from keras.layers import Conv2D, MaxPooling2D, Flatten
     6 from keras.optimizers import SGD, Adam
     7 from keras.utils import np_utils
     8 from keras.datasets import mnist
     9 #categrorical_crossentropy
    10 
    11 def load_data():
    12     (x_train, y_train), (x_test, y_test) = mnist.load_data()
    13     number = 10000
    14     x_train = x_train[0:number]
    15     y_train = y_train[0:number]
    16     x_train = x_train.reshape(number, 28*28)
    17     x_test = x_test.reshape(x_test.shape[0], 28*28)
    18     x_train = x_train.astype('float32')
    19     x_test = x_test.astype('float32')
    20     # convert class vector to binary class matrices
    21     y_train = np_utils.to_categorical(y_train, 10)
    22     y_test = np_utils.to_categorical(y_test, 10)
    23     x_train = x_train
    24     x_test = x_test
    25     #x_test = np.random.normal(x_test)
    26     x_train = x_train / 255
    27     x_test = x_test / 255
    28     return (x_train, y_train), (x_test,y_test)
    29 
    30 (x_train, y_train), (x_test,y_test) = load_data()
    31 
    32 
    33 model = Sequential()
    34 model.add(Dense(input_dim=28*28, units=689, activation='sigmoid'))  #第一层
    35 model.add(Dense(units=689, activation='sigmoid'))  #第二层
    36 
    37 # for i in range(10):
    38 #     model.add(Dense(units=689, activation='sigmoid'))
    39 
    40 model.add(Dense(units=689, activation='sigmoid')) # 第三层
    41 model.add(Dense(units=10, activation='softmax'))   # 输出层
    42 
    43 
    44 model.compile(loss='mse', optimizer=SGD(lr=0.1), metrics=['accuracy'])
    45 
    46 model.fit(x_train, y_train, batch_size=100, epochs=20)
    47 
    48 result = model.evaluate(x_test, y_test)
    49 
    50 print('
    Test Acc:', result[1])

    基本实现是可以的,但需要调整参数,识别度低

    程序优化

     1 import tensorflow as tf
     2 import numpy as np
     3 from keras.models import Sequential
     4 from keras.layers.core import Dense, Dropout, Activation
     5 from keras.layers import Conv2D, MaxPooling2D, Flatten
     6 from keras.optimizers import SGD, Adam
     7 from keras.utils import np_utils
     8 from keras.datasets import mnist
     9 #categrorical_ crossentropy
    10 
    11 def load_data():
    12     (x_train, y_train), (x_test, y_test) = mnist.load_data()
    13     number = 10000
    14     x_train = x_train[0:number]
    15     y_train = y_train[0:number]
    16     x_train = x_train.reshape(number, 28*28)
    17     x_test = x_test.reshape(x_test.shape[0], 28*28)
    18     x_train = x_train.astype('float32')
    19     x_test = x_test.astype('float32')
    20     # convert class vector to binary class matrices
    21     y_train = np_utils.to_categorical(y_train, 10)
    22     y_test = np_utils.to_categorical(y_test, 10)
    23     x_train = x_train
    24     x_test = x_test
    25     #x_test = np.random.normal(x_test)
    26     x_train = x_train / 255
    27     x_test = x_test / 255
    28     x_test = np.random.normal(x_test)
    29     return (x_train, y_train), (x_test,y_test)
    30 (x_train, y_train), (x_test,y_test) = load_data()
    31 
    32 
    33 model = Sequential()
    34 model.add(Dense(input_dim=28*28, units=689, activation='relu'))  #第一层 将原先的sigmoid换成relu
    35 model.add(Dropout(0.7))       # 设置dropout  设置在每一个hidden layer 之后  一般出现over fitting时加
    36 model.add(Dense(units=689, activation='relu'))  #第二层
    37 model.add(Dropout(0.7))
    38 # for i in range(10):
    39 #     model.add(Dense(units=689, activation='relu'))
    40 
    41 model.add(Dense(units=689, activation='relu')) # 第三层
    42 model.add(Dropout(0.7))
    43 model.add(Dense(units=10, activation='softmax'))   # 输出层
    44 
    45 
    46 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])  #将loss 换成categorical_crossentropy ,optimizer换成 adam
    47 
    48 model.fit(x_train, y_train, batch_size=100, epochs=20)
    49 
    50 
    51 result0 = model.evaluate(x_train, y_train, batch_size=100)
    52 
    53 print('
    Train Acc:', result0[1])
    54 
    55 
    56 result = model.evaluate(x_test, y_test, batch_size=100)
    57 
    58 print('
    Test Acc:', result[1])

    将第一个程序中的sigmoid换成relu   Loss Function 改用 categorical_crossentropy  将optimizer改为adam   test的正确率达到96%

  • 相关阅读:
    JAVA课程设计+五子棋游戏
    201521123059 《Java程序设计》第十四周学习总结
    201521123059 《Java程序设计》第十三周学习总结
    软工个人总结
    alpha阶段个人总结
    centos 下构建lamp环境
    软工15作业3——案例分析
    结对编程
    201521123058 软工阅读第二次作业
    软工阅读作业1(201521123058 李绍乐)
  • 原文地址:https://www.cnblogs.com/cfancy/p/12331834.html
Copyright © 2011-2022 走看看