线性表是一种十分基础且重要的数据结构,它主要包括以下内容:
- 数组
- 链表
- 队列
- 栈
接下来,我将对这四种数据结构做一个详细的总结,其中对链表实现了十几种常见的操作。希望对你有所帮助。
1.数组
数组(Array)是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据。
注意点:①.数组是一种线性表;②.连续的内存空间和相同类型的数据
由于第二个性质,数组支持 “随机访问”,根据下表随机访问的时间复杂度为O(1);但与此同时却使得在数组中删除,插入数据需要大量的数据搬移工作。
低效的“插入”和“删除”
插入操作
假如数组的长度为n,我们需要将一个数据插入到数组的第k个位置,我们需要将第k~n位元素都顺序地往后挪动一位。
最好情况时间复杂度为O(1),此时对应着在数组末尾插入元素;
最坏情况时间复杂度为O(n),此时对应着在数组开头插入元素;
平均情况时间复杂度为O(n),因为我们在每个位置插入元素的概率相同,故(1+2+3+……+n)/n=O(n);
但是根据我们的需求,有一个特定的场景。如果数组的数据是有序的,那么我们在插入时就一定要那么做;但是如果数组中存储的数据并没有任何规律,数组只是被当成一个存储数据的集合,我们可以有一个取巧的方法:
直接将第k个元素搬移到数组元素的最后,把新的数据直接放入第k个位置即可(是不是很简单啊),这时插入元素的复杂度为O(1)。
删除操作
和插入操作一样,为了保证内存的连续性,删除操作也需要搬移数据。
最好情况时间复杂度为O(1),此时对应着删除数组末尾的元素;
最坏情况时间复杂度为O(n),此时对应着删除数组开头的元素;
平均情况时间复杂度为O(n),因为我们删除每个位置的元素的概率相同,故(1+2+3+……+n)/n=O(n);
当然,在某些特殊情况下,我们并不一定非要进行复杂的删除操作。我们只是将需要删除的数据记录,并且假装它以经被删除了。直到数组没有更多空间存储数据时,我们再触发一次真正的删除操作即可。
这其实就和生活中的垃圾桶类似,垃圾并没有消失,只是被“标记”成了垃圾,而直到垃圾桶塞满时,才会清理垃圾桶。
警惕数组访问越界
在 C 语言中,只要不是访问受限的内存,所有的内存空间都是可以自由访问的。如果疏忽会造成严重的后果。当然,Java会自动检测。
2.链表
- 链表结点表示
- 打印单链表
- 单链表根据索引插入结点
- 获取单链表的长度
- 打印单链表的长度
- 单链表删除指定索引的结点
- 单链表实现元素查找,返回是否存在布尔值
- 单链表删除指定索引的后续节点
- 单链表反转
- 递归地进行单链表反转
- 检测链表中是否含有环
- 删除倒数第k个结点
- 求中间节点
- 有序链表合并
链表结点表示
public class Node{
int data;
Node Next;
}
打印单链表
public class Method {
//打印单链表
public static void PrintNode (Node list){
for(Node x=list;x!=null;x=x.Next)
System.out.print(x.data+" ");
System.out.println();
}
单链表根据索引插入结点
public static Node insert(Node first,int index,Node a){
Node ret = new Node();
ret.Next=first;//创建一个虚拟头节点
Node p=ret;
while((index--)!=0) p=p.Next;
//完成节点的插入操作
a.Next=p.Next;
p.Next=a;
//返回真正的链表头节点地址
return ret.Next;//函数返回链表的头节点
}
获取单链表的长度
public static int GetLength(Node first){
int n=0;
for(Node x=first;x!=null;x=x.Next){
++n;
}
return n;
}
打印单链表的长度
public static void PrintLength(Node first){
System.out.println("Length : "+GetLength(first));
}
单链表删除指定索引的结点
public static Node Delete(Node first,int index){
if(index<0||index>=GetLength(first)) return first;
else{
Node ret=new Node();
ret.Next=first;
Node p=ret;
while((index--)!=0) p=p.Next;
//完成节点的删除操作
p.Next=p.Next.Next;
return ret.Next;
}
}
单链表实现元素查找,返回是否存在布尔值
public static boolean Find(Node first,int key){
for(Node x=first;x!=null;x=x.Next){
if(x.data==key) return true;
}
return false;
}
单链表删除指定索引的后续节点
public static void RemoveAfter(Node first,int index){
Node ret=new Node();
ret.Next=first;
Node p=ret;
while((index--)!=0) p=p.Next;
p.Next.Next=null;
}
单链表反转
public static Node reverse(Node list){
Node curr=list,pre=null;
while(curr!=null){
Node next=curr.Next;
curr.Next=pre;
pre=curr;
curr=next;
}
return pre;
}
递归地进行单链表反转
public static Node reverseRecursively(Node head){
if(head==null||head.Next==null) return head;//递归的终止条件,返回反转后链表的头节点
Node reversedListHead=reverseRecursively(head.Next);
head.Next.Next=head;//改变这两个结点之间的指向顺序
head.Next=null;
return reversedListHead;//返回反转后的链表头节点
}
检测链表中是否含有环
public static boolean checkCircle(Node list){
if(list==null) return false;
Node fast=list.Next;
Node slow=list;
while(fast!=null&&fast.Next!=null){
fast=fast.Next.Next;
slow=slow.Next;
if(slow==fast) return true;
}
return false;
}
删除倒数第k个结点
public static Node deleteLastKth(Node list,int k){
//利用两个指针,fast和slow,它们之间差k个位置,判断如果fast.Nest=null,也就代表着slow这个位置就是倒数第k个结点
Node fast=list;
int i=1;
while(fast!=null&&i<k){
fast=fast.Next;
++i;
}
if(fast==null) return list;
Node slow=list;
Node prev=null;
while(fast.Next!=null){
fast=fast.Next;
prev=slow;
slow=slow.Next;
}
if(prev==null){
list=list.Next;
}else{
prev.Next=prev.Next.Next;
}
return list;
}
求中间节点
public static Node findMiddleNode(Node list){
if(list==null) return null;
Node fast=list;
Node slow=list;
while(fast!=null&&fast.Next!=null){
fast=fast.Next.Next;
slow=slow.Next;
}
return slow;
}
有序链表合并
public static Node mergeTwoLists(Node l1,Node l2){
Node soldier=new Node();
Node p=soldier;
while(l1!=null&&l2!=null){
if(l1.data<l2.data){
p.Next=l1;
l1=l2.Next;
}
else{
p.Next=l2;
l2=l2.Next;
}
p=p.Next;
}
if(l1!=null){ p.Next=l1;}
if(l2!=null){ p.Next=l2;}
return soldier.Next;
}
3.栈
- 顺序栈
- 链式栈
1.基于数组实现的顺序栈
- 构造函数
- 入栈操作
- 出栈操作
- 打印操作
package Stack;
//基于数组实现的顺序栈
public class ArrayStack {
private int[] items;
private int count;//栈中的元素个数
private int n;//栈的大小
//初始化数组,申请一个大小为n的数组空间
public ArrayStack(int n){
this.items=new int[n];
this.n=n;
this.count=0;
}
//入栈操作
public boolean push(int item){
//数组空间不足,直接返回false,入栈失败
if(count==n) return false;
//将data放在下标为count的位置,并且count加一
items[count]=item;
++count;
return true;
}
//出栈操作
public int pop(){
//栈为空,直接返回-1;
if(count==0) return -1;
//返回下标为count-1的数组元素,并且栈中元素个数count减一
int tmp=items[count-1];
--count;
return tmp;
}
public void PrintStack(){
for(int i=count-1;i>=0;--i){
System.out.print(items[i]+" ");
}
System.out.println();
}
}
2.基于链表的链式栈
- 入栈操作
- 出栈操作
- 打印操作
package Stack;
public class LinkedListStack {
private Node top;//栈顶(最近添加的元素)
private int N;//元素数量
private class Node{
//定义了结点的嵌套类
int data;
Node Next;
}
public boolean isEmpty(){
return top==null;
}
public int size(){
return N;
}
public void push(int data){
/*Node newNode=new Node();
//判断是否为空栈
//if(top==null)
newNode=top;
top.data=data;
top.Next=newNode;
N++;*/
Node newNode=top;
top=new Node();
top.data=data;
top.Next=newNode;
++N;
}
public int pop(){
//从栈顶删除元素
if(top==null) return -1;//这里用-1表示栈中没有数据
int data=top.data;
top=top.Next;
N--;
return data;
}
public void PrintStack(){
for(Node x=top;x!=null;x=x.Next){
System.out.print(x.data+" ");
}
System.out.println();
}
}
4.普通队列
- 基于数组实现的普通队列
- 基于链表实现的队列
- 基于数组实现的循环队列
1.基于数组实现的普通队列
- 构造函数
- 入队操作
- 出队操作
- 打印队列中的元素
package Queue;
//用数组实现队列
public class ArrayQueue {
//数组:items,数组大小:n
private int[] items;
private int n=0;
//head表示队头下标,tail表示队尾下标
private int head=0;
private int tail=0;
//申请一个大小为capacity的数组
public ArrayQueue(int capacity){
items=new int[capacity];
n=capacity;
}
//入队(一),基础版
public boolean enqueue(int item){
//如果tail==n,表示队列末尾已经没有空间了
if(tail==n) return false;
items[tail]=item;
++tail;
return true;
}
//入队(二),改进版
public boolean enqueue1(int item){
//如果tail==n,表示队列末尾已经没有空间了
if(tail==n){
//tail==n&&head==0,表示整个队列都占满了
if(head==0) return false;
//数据搬移
for(int i=head;i<tail;++i){
items[i-head]=items[i];
}
//搬移完成后重新更新head和tail
tail=tail-head;
head=0;
}
items[tail]=item;
++tail;
return true;
}
//出队
public int dequeue(){
//如果head==tail,表示队列为空
if(head==tail) return -1;//这里用-1表示队列为空
int ret=items[head];
++head;
return ret;
}
//打印队列
public void PrintQueue(){
for(int i=head;i<tail;++i){
System.out.print(items[i]+" ");
}
System.out.println();
}
}
2.基于链表实现的队列
- 构造函数
- 入队操作
- 出队操作
- 打印队列中的元素
package Queue;
//基于链表实现的队列
public class LinkedListQueue {
private Node head;//指向最早添加的结点的链接
private Node tail;//指向最近添加的结点的链接
private int N;//队列中的元素数量
private class Node{
//定义了结点的嵌套类
int data;
Node Next;
}
public boolean isEmpty(){
return head==null;
}
public int size(){ return N;}
//向表尾添加元素,即入队
public void enqueue(int data){
Node newNode=tail;
tail=new Node();
tail.data=data;
tail.Next=null;
if(isEmpty()) head=tail;
else newNode.Next=tail;
++N;
}
public int dequeue(){
//从表头删除元素
int data=head.data;
head=head.Next;
if(isEmpty()) tail=null;
N--;
return data;
}
//打印输出队列元素
public void PrintQueue(){
for(Node x=head;x!=null;x=x.Next){
System.out.print(x.data+" ");
}
System.out.println();
}
}
3.基于数组实现的循环队列
- 构造函数
- 入队操作
- 出队操作
- 打印队列中的元素
package Queue;
public class CircularQueue {
//数组items,数组大小n
private int[] items;
private int n=0;
//head表示队头下标,tail表示队尾下标
private int head=0;
private int tail=0;
//申请一个大小为capacity的数组
public CircularQueue(int capacity){
items = new int[capacity];
n=capacity;
}
//入队
public boolean enqueue(int item){
//队列满了
if((tail+1)%n==head) return false;
items[tail]=item;
tail=(tail+1)%n;//实现计数的循环
return true;
}
//出队
public int dequeue(){
//如果head==tail,表示队列为空
if(head==tail) return -1;//以-1表示队列为空
int ret=items[head];
head=(head+1)%n;
return ret;
}
//打印队列
public void PrintQueue(){
if(n==0) return;
for(int i=head;i%n!=tail;i=(i+1)%n){
System.out.print(items[i]+" ");
}
System.out.println();
}
}
说明
文章代码太多,我本来是希望分成几篇文章写的,但是由于一些原因,最终放在了一起,略显臃肿。代码都是经过测试用例测试过的,应该不会有错误。
如果体验不太好,可以移步我的Github,里面观感较好。
题外话:对于算法初学者,推荐一本十分 nice 的书籍 《算法第四版》,里面各种配图十分详细。如果你需要电子版文件,后台回复算法4即可获得下载链接。后台回复 算法01 送你一份 算法与数据结构思维导图。最后,希望我们一起进步,一起成长!