zoukankan      html  css  js  c++  java
  • Fuzzy Probability Theory---(1)Fuzzy Sets

    Introduction

    Example: $X={x_1,x_2,x_3}$ with $P(x_i)=a_i,~sum^{3}_{i=1}a_i=1$. In practice all the $a_i$ values must be known exactly through estimatimation or provided by experts.

    Now assume that some of these $a_i$ values are uncertain and we will model this uncertainty using intervals. Suppose we estimate $a_1in[0.1,0.3],~a_2in[0.3,0.7],~a_3in[0.2,0.4]$.

    Then $P({x_1,x_2})={a_1+a_2|a_1in[0.1,0.3],~a_2in[0.3,0.7],~a_3in[0.2,0.4],~sum^{3}_{i=1}a_i=1}$=[0.6,0.8] which is not the sum of the two intervals [0.1,0.3]+[0.3,0.7] = [0.4,1.0]. Because the constraint that the probabilities must add to one. 

    Interval probabilities can be easily extended to fuzzy probabilities because a fuzzy probability is a fuzzy number composed of a nested collection of intervals constructed by taking $alpha$-cuts. The interval $P({x_1,x_2})$=[0.6,0.8] will just only be one of the alpha-cuts of the fuzzy probability of event ${x_1,x_2}$  which will be a fuzzy number.

    When all the probabilities are fuzzy we will still insist that the sum of all the individual probabilities is one. This will produce what we call restricted fuzzy arithmetic  $sum^{n}_{i=1}a_i=1$.

    A fuzzy random variable is just a random variable with a fuzzy probability mass function (discrete case such as $b(n,ar{p})$ where $ar{p}$ is a fuzzy number), or a fuzzy probability density function ( the continuous case such as $N(ar{u},ar{sigma}^2)$ where $ar{u},~ar{sigma}$ are fuzzy numbers).

    Fuzzy Sets

    If $Omega$ is some set, then a fuzzy subset $ar{A}$ of $Omega$ is defined by its membership function $ar{A}(x) in [0,1]$ for all $x$ in $Omega$. When $ar{A}(x)$ is always equal to one or zero we obtain a crisp(non-fuzzy) subset of $Omega$.

    Fuzzy Numbers

    Fuzzy number is a special type of fuzzy sets. Here we only involve triangular (shaped), or trapezoidal(shaped) fuzzy numbers. We will be using fuzzy numbers in this book to describe uncertainty.

    $alpha$-cuts

    Alpha-cuts are slices through a fuzzy set producing regular (non-fuzzy) sets $$ar{A}[alpha]={xinOmega|ar{A}(x)geq alpha}$$. For any fuzzy number $ar{A}$ we know that $ar{A}[alpha]$ is a closed, bounded, interval for $0leq alpha leq 1$. We will write this as $$ar{A}[alpha]=[q_1(alpha),q_2(alpha)]$$. More properties about $q_i(alpha)$, please see the image below.

    For example, if $L(x)=0.5+frac{1}{1+e^{1-x}},~xin[-infty,1]$, we get $x=1-In(3-2y)+In(2y-1),~yin[0.5,1]$ then $q_1(alpha)=1-In(3-2alpha)+In(2alpha-1)$.

    Fuzzy Arithmetic

    There are 2 ways to compute fuzzy numbers: (1)Extension principle (2)$alpha$-cuts and interval arithmetic.

    (1)Extension principle. Denote $ar{*}$ as a 2-Dim fuzzy arithmetic operator between $ar{A},~ar{B}$, then the result of $ar{*}$ $ar{C}$ is

    $$ar{C}(z)=sup{min(ar{A}(x),ar{B}(y))~|~x~ar{*}~y=z}$$.

    Obviously, given $ar{A}$ and $ar{B}$, the above equation is quite complicated. So, we now present an equivalent procedure based on a-cuts and interval arithmetic. 

    (2-1)Interval Arithmetic. Let $[a_1,b_1]$ and $[a_2,b_2]$ be two closed, bounded, and intervals of real numbers. If $ar{*}$ denotes addition, subtraction, multiplication, or division, then $[a_1,b_1]~ar{*}~[a_2,b_2]=[alpha,eta]$ where $$[alpha,eta]={a~ar{*}~b~|~ain[a_1,b_1],~bin[a_2,b_2]}$$

    (2-2)Fuzzy Arithmetic. 

     Again we have two fuzzy numbers $ar{A},~ar{B}$. We know $alpha$-cuts are closed, bounded, intervals so let $ar{A}[alpha]=[a_1(alpha),a_2(alpha)]$ and $ar{B}[alpha]=[b_1(alpha),b_2(alpha)]$, then $ar{C}[alpha]=ar{A}~ar{*}~ar{B}$. Therefore fuzzy arithmetic becomes interval arithemetic. This method is equivalent to the extension principle method of fuzzy arithmetic. Obviously, this procedure, of $alpha$-cuts plus interval arithmetic, is more user(and computer) friendly.

    Fuzzy Functions

    A fuzzy function is a mapping from fuzzy numbers into fuzzy numbers such as $H(ar{X},ar{Y})=ar{Z}$. Where do these fuzzy functions come from? They are usually extensions of real-valued functions. For example, $H(ar{X},ar{Y})=ar{Z}$ comes from $h:[a,b] imes[c,d] o R$. There are 2 ways of extending $h$ to $H$:(1)Extension principle (2)using $alpha$-cuts and interval arithmetic.

    Extension Principle

    Let $z=h(x_1,x_2,...,x_n)$ for $x_i$ in $[a_i,b_i]$. We extend $h$ to $H(ar{X_1},ar{X_2},...,ar{X_n})=ar{Z}$ as  $$ar{Z}(z)=sup{min(ar{X_1}(x_1),ar{X_2}(x_2),...,ar{X_n}(x_n))~|~h(x_1,x_2,...,x_n)=z}$$.

    z = peaks(25);
    figure
    mesh(z);
    surfl(z);
    shading interp;
    hold on;
    
    x=0:.1:30;
    [X,Y] = meshgrid(x);
    a=0; b=0; c=1; d=1.5;
    Z=(d-a * X - b * Y)/c;
    surf(X,Y,Z);
    shading flat;
    xlabel('x'); ylabel('y'); zlabel('z=h(x,y)');
    

    Alpha-Cuts and Interval Arithmetic

    For $alpha$-cuts of $ar{Z}=H(ar{X},ar{Y})$, assuming $h$ is continuous, we have $$ar{Z}[alpha]=[z_1(alpha),z_2(alpha)]=[min{P(alpha)},max{P(alpha)}]$$ where $P(alpha)={h(x,y)~|~xinar{X}[alpha],~yinar{Y}[alpha]}$. Let's look at the $z=h(x,y)$

     

     

    N = 5.0;
    x=linspace(-N, N);
    y=x;
    [X,Y]=meshgrid(x,y);
    z=(1000/sqrt(2*pi).*exp(-(X.^2/2)-(Y.^2/2)));
    surf(X,Y,z);
    %shading interp
    %axis tight
    
    %figure(1);
    % Use hold on and hold off to plot multiple cubes
    hold on;
    % Call the function to plot a cube with dimension of X, Y, Z, at point [x,y,z].
    cube_plot([-0.5,-0.5,0],1.4,1,370,'r');
    % Figure configurations
    % Define the range of x-axis, y-axis, and z-axis in form of
    % [xmin,xmax,ymin,ymax,zmin,zmax].
    %axis([1,2,0,1,0,1]);
    % Set the axis with equal unit.
    %axis equal;
    % Show grids on the plot
    %grid on;
    % Set the lable and the font size
    %xlabel('X','FontSize',18);
    %ylabel('Y','FontSize',18);
    %zlabel('Z','FontSize',18)
    % Control the ticks on the axises
    %h = gca; % Get the handle of the figure
    % h.XTick = 0:0.5:1;
    % h.YTick = 0:0.5:1;
    % h.ZTick = 0:0.5:1;
    % Set the color as transparient
    %material metal
    %alpha('color');
    %alphamap('rampup');
    % Set the view point
    %view(30,30);
    

    Extension Principle VS. ($alpha$-cuts, Interval Arithmetic)

     Actually they are different! Let us write $ar{Z}^{*}=H(ar{X})$ for the extension principle method of extending $h$ to $H$, while $ar{Z}=H(ar{X})$ denote for the $alpha$-cut and interval arithmetic extension of $h$. It has been known that $ar{Z}$ may be something larger than $ar{Z}^{*}$. More specifically, if each fuzzy number appears only once in the fuzzy expression, the two methods produce the same results. However, if a fuzzy number is used more than once, the 2 procedures can give different results. 

  • 相关阅读:
    django项目中使用手机号登录
    django项目登录中使用图片验证码
    django项目中使用bootstrap插件的分页功能。
    scrapy框架用CrawlSpider类爬取电影天堂.
    scrapy框架爬取开源中国项目大厅所有的发布项目。
    scrapy框架爬取智联招聘网站上深圳地区python岗位信息。
    Django项目中使用qq第三方登录。
    使用scrapy框架爬取全书网书籍信息。
    【教程】如果公司的网络屏蔽了游戏【英雄联盟】的链接请求,使用这种方法玩游戏。
    尝试.Net Core—使用.Net Core + Entity FrameWork Core构建WebAPI(一)
  • 原文地址:https://www.cnblogs.com/chaseblack/p/5931730.html
Copyright © 2011-2022 走看看