题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6601
Problem Description
N sticks are arranged in a row, and their lengths are a1,a2,...,aN.
There are Q querys. For i-th of them, you can only use sticks between li-th to ri-th. Please output the maximum circumference of all the triangles that you can make with these sticks, or print −1 denoting no triangles you can make.
There are Q querys. For i-th of them, you can only use sticks between li-th to ri-th. Please output the maximum circumference of all the triangles that you can make with these sticks, or print −1 denoting no triangles you can make.
Input
There are multiple test cases.
Each case starts with a line containing two positive integers N,Q(N,Q≤105).
The second line contains N integers, the i-th integer ai(1≤ai≤109) of them showing the length of the i-th stick.
Then follow Q lines. i-th of them contains two integers li,ri(1≤li≤ri≤N), meaning that you can only use sticks between li-th to ri-th.
It is guaranteed that the sum of Ns and the sum of Qs in all test cases are both no larger than 4×105.
Each case starts with a line containing two positive integers N,Q(N,Q≤105).
The second line contains N integers, the i-th integer ai(1≤ai≤109) of them showing the length of the i-th stick.
Then follow Q lines. i-th of them contains two integers li,ri(1≤li≤ri≤N), meaning that you can only use sticks between li-th to ri-th.
It is guaranteed that the sum of Ns and the sum of Qs in all test cases are both no larger than 4×105.
Output
For each test case, output Q lines, each containing an integer denoting the maximum circumference.
Sample Input
5 3
2 5 6 5 2
1 3
2 4
2 5
Sample Output
13
16
16
主席树求最大三条边,如果三边能组成三角形即为答案,否则再找第二大第三大第四大的边,一直找到符合的
#include<iostream> #include<cstdio> #include<algorithm> using namespace std; #define maxn 100005 #define ll long long int T[maxn*20],L[maxn*20],R[maxn*20],sum[maxn*20],tot; ll a[maxn],b[maxn]; inline int update(int pre,int l,int r,int x) { int rt=++tot; L[rt]=L[pre]; R[rt]=R[pre]; sum[rt]=sum[pre]+1; if(l<r) { int mid=l+r>>1; if(x<=mid)L[rt]=update(L[pre],l,mid,x); else R[rt]=update(R[pre],mid+1,r,x); } return rt; } inline int query(int u,int v,int l,int r,int k) { if(l>=r)return l; int x=sum[L[v]]-sum[L[u]],mid=l+r>>1; if(x>=k)return query(L[u],L[v],l,mid,k); else return query(R[u],R[v],mid+1,r,k-x); } int main() { int n,m; while(scanf("%d%d",&n,&m)!=EOF) { for(int i=1;i<=n;i++) { scanf("%lld",&a[i]); b[i]=a[i]; } sort(b+1,b+1+n); int len=unique(b+1,b+1+n)-b-1; T[0]=L[0]=R[0]=sum[0]=tot=0; for(int i=1;i<=n;i++) { int pos=lower_bound(b+1,b+1+len,a[i])-b; T[i]=update(T[i-1],1,len,pos); } for(int i=1;i<=m;i++) { int l,r; int flag=0; ll ans=0; scanf("%d%d",&l,&r); for(int i=r-l+1;i>=3;i--) { ll A=b[query(T[l - 1],T[r],1,len,i)]; ll B=b[query(T[l - 1],T[r],1,len,i-1)]; ll C=b[query(T[l - 1],T[r],1,len,i-2)]; if(B+C>A) { flag=1; ans=A+B+C; break; } } if(flag)printf("%lld ",ans); else printf("-1 "); } } return 0; }