zoukankan      html  css  js  c++  java
  • poj2891(线性同余方程组)

    一个exgcd解决一个线性同余问题,多个exgcd解决线性同余方程组。

    Strange Way to Express Integers
    Time Limit: 1000MS   Memory Limit: 131072K
    Total Submissions: 12001   Accepted: 3797

    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ ik) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ ik).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <stdlib.h>
    using namespace std;
    #define N 10100
    
    long long a[N],r[N];
    
    long long cal_axb(long long a,long long b,long long mod)
    {
        long long sum=0;
        while(b)
        {
            if(b&1) sum=(sum+a)%mod;
            b>>=1;
            a=(a+a)%mod;
        }
        return sum;
    }
    
    // ax+by = gcd(a,b) ->求解x,y 其中a,b不全为0,可以为负数
    // 复杂度:O(log2a)
    void extendgcd(long long a,long long b,long long &x,long long &y)
    {
        if(a%b==0)
        {
            //到了终止条件
            x=0; y=1;
            return ;
        }
        extendgcd(b,a%b,x,y);
        long long tmpx;
        tmpx=y;
        y=x - (a/b)*y;
        x=tmpx;
    }
    
    
    
    long long Multi_ModX(long long m[],long long r[],int n)
    {
        long long m0,r0;
        m0=m[0]; r0=r[0];
        for(int i=1;i<n;i++)
        {
            long long m1=m[i],r1=r[i];
            long long tmpd=__gcd(m0,m1);
            if( (r1 - r0)%tmpd!=0 ) return -1;
            long long k0,k1;
            extendgcd(m0,m1,k0,k1);
            k0 *= (r1-r0)/tmpd;
            //k0会不会很大
            m1 *= m0/tmpd;
            r0 = (cal_axb(k0,m0,m1)+r0)%m1;
            m0=m1;
        }
        return (r0%m0+m0)%m0;
    }
    
    int main()
    {
        int k;
        while(cin>>k)
        {
            for(int i=0;i<k;i++)
                cin>>a[i]>>r[i];
            cout<<Multi_ModX(a,r,k)<<endl;
        }
        return 0;
    }
  • 相关阅读:
    string的erase函数和find、find_first_of函数
    strtok和strtok_r
    Linux添加硬盘 挂载硬盘(附 Linux磁盘挂载和mount共享 带图)
    linux下访问中文目录文件
    用yield写协程实现生产者消费者
    用进程池和线程池实现高并发服务器
    python自带线程池
    python自带进程池
    模拟线程池代码
    面向对象的多次调用线程(含参版)
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/4991869.html
Copyright © 2011-2022 走看看