zoukankan      html  css  js  c++  java
  • codeforces 474D

    D. Flowers
    time limit per test
    1.5 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    We saw the little game Marmot made for Mole's lunch. Now it's Marmot's dinner time and, as we all know, Marmot eats flowers. At every dinner he eats some red and white flowers. Therefore a dinner can be represented as a sequence of several flowers, some of them white and some of them red.

    But, for a dinner to be tasty, there is a rule: Marmot wants to eat white flowers only in groups of size k.

    Now Marmot wonders in how many ways he can eat between a and b flowers. As the number of ways could be very large, print it modulo 1000000007 (109 + 7).

    Input

    Input contains several test cases.

    The first line contains two integers t and k (1 ≤ t, k ≤ 105), where t represents the number of test cases.

    The next t lines contain two integers ai and bi (1 ≤ ai ≤ bi ≤ 105), describing the i-th test.

    Output

    Print t lines to the standard output. The i-th line should contain the number of ways in which Marmot can eat between ai and bi flowers at dinner modulo 1000000007 (109 + 7).

    Examples
    input
    3 2
    1 3
    2 3
    4 4
    output
    6
    5
    5
     
    Note
    • For K = 2 and length 1 Marmot can eat (R).
    • For K = 2 and length 2 Marmot can eat (RR) and (WW).
    • For K = 2 and length 3 Marmot can eat (RRR), (RWW) and (WWR).
    • For K = 2 and length 4 Marmot can eat, for example, (WWWW) or (RWWR), but for example he can't eat (WWWR).

    题目的意思是Marmot只吃连续的k个白色的花,红色的花任意吃,计算从a到b之间有多少种可能。

    例如:

      k=2时,长度为1Marmot只能吃1(R)

      k=2时,长度为2Marmot只能吃2 (RR)和(WW)

      k=2时,长度为3Marmot只能吃3(RRR)、(RWW)和(WWR)

    l 1 2 3 4 5 6
    sum 1 2 3 5 8 13
    先枚举k=2的情况,然后发现数字之间的规律,dp[i]=dp[i-1]+dp[i-k]
    然后题目要求大于1000000007的数要求余
    #include<iostream>
    #define mod 1000000007
    #define MAXN 1000005
    using namespace std;
    typedef long long ll;
    ll dp[MAXN];
    ll sum[MAXN];
    int main()
    {
        int t, k, a, b;
        cin >> t >> k;
        for (int i = 0;i < k;i++)
        {
            dp[i] = 1;
            sum[i] = i;
        }
        sum[0] = 0;
        for (int i = k;i < MAXN;i++)
        {
            dp[i] = (dp[i - 1] + dp[i - k]) % mod;
            sum[i] = (sum[i - 1] + dp[i]) % mod;
        }
        for (int i = 0;i < t;i++)
        {
            cin >> a >> b;
            cout << (sum[b] - sum[a - 1] + mod) % mod << endl;
        }
        return 0;
    }
  • 相关阅读:
    WUSTOJ 1232: 矩阵乘法(C)
    JDBC(Java项目使用Oracle数据库)
    1187: 零起点学算法94——今年暑假不AC(Java)
    1223: 输出汉诺塔问题的盘子移动步骤(Java)
    软件设计师真题及解析
    Eclipse常用快捷键
    1205: 求一元二次方程的实数根(C)
    1204: 移位运算(C)
    1192: 零起点学算法99——The sum problem(C)
    1186: 零起点学算法93——改革春风吹满地(C)
  • 原文地址:https://www.cnblogs.com/chenruijiang/p/8392166.html
Copyright © 2011-2022 走看看