zoukankan      html  css  js  c++  java
  • 使用Numpy实现卷积神经网络(CNN)

    import numpy as np
    import sys
    
    
    def conv_(img, conv_filter):
        filter_size = conv_filter.shape[1]
        result = np.zeros((img.shape))
        # 循环遍历图像以应用卷积运算
        for r in np.uint16(np.arange(filter_size/2.0, img.shape[0]-filter_size/2.0+1)):
            for c in np.uint16(np.arange(filter_size/2.0, img.shape[1]-filter_size/2.0+1)):
                # 卷积的区域
                curr_region = img[r-np.uint16(np.floor(filter_size/2.0)):r+np.uint16(np.ceil(filter_size/2.0)),
                              c-np.uint16(np.floor(filter_size/2.0)):c+np.uint16(np.ceil(filter_size/2.0))]
                # 卷积操作
                curr_result = curr_region * conv_filter
                conv_sum = np.sum(curr_result)
                # 将求和保存到特征图中
                result[r, c] = conv_sum
    
            # 裁剪结果矩阵的异常值
        final_result = result[np.uint16(filter_size/2.0):result.shape[0]-np.uint16(filter_size/2.0),
                       np.uint16(filter_size/2.0):result.shape[1]-np.uint16(filter_size/2.0)]
        return final_result
    
    
    def conv(img, conv_filter):
        # 检查图像通道的数量是否与过滤器深度匹配
        if len(img.shape) > 2 or len(conv_filter.shape) > 3:
            if img.shape[-1] != conv_filter.shape[-1]:
                print("错误:图像和过滤器中的通道数必须匹配")
                sys.exit()
    
        # 检查过滤器是否是方阵
        if conv_filter.shape[1] != conv_filter.shape[2]:
            print('错误:过滤器必须是方阵')
            sys.exit()
    
        # 检查过滤器大小是否是奇数
        if conv_filter.shape[1] % 2 == 0:
            print('错误:过滤器大小必须是奇数')
            sys.exit()
    
        # 定义一个空的特征图,用于保存过滤器与图像的卷积输出
        feature_maps = np.zeros((img.shape[0] - conv_filter.shape[1] + 1,
                                 img.shape[1] - conv_filter.shape[1] + 1,
                                 conv_filter.shape[0]))
    
        # 卷积操作
        for filter_num in range(conv_filter.shape[0]):
            print("Filter ", filter_num + 1)
            curr_filter = conv_filter[filter_num, :]
    
            # 检查单个过滤器是否有多个通道。如果有,那么每个通道将对图像进行卷积。所有卷积的结果加起来得到一个特征图。
            if len(curr_filter.shape) > 2:
                conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0])
                for ch_num in range(1, curr_filter.shape[-1]):
                    conv_map = conv_map + conv_(img[:, :, ch_num], curr_filter[:, :, ch_num])
            else:
                conv_map = conv_(img, curr_filter)
            feature_maps[:, :, filter_num] = conv_map
        return feature_maps
    
    
    def pooling(feature_map, size=2, stride=2):
        # 定义池化操作的输出
        pool_out = np.zeros((np.uint16((feature_map.shape[0] - size + 1) / stride + 1),
                             np.uint16((feature_map.shape[1] - size + 1) / stride + 1),
                             feature_map.shape[-1]))
    
        for map_num in range(feature_map.shape[-1]):
            r2 = 0
            for r in np.arange(0, feature_map.shape[0] - size + 1, stride):
                c2 = 0
                for c in np.arange(0, feature_map.shape[1] - size + 1, stride):
                    pool_out[r2, c2, map_num] = np.max([feature_map[r: r+size, c: c+size, map_num]])
                    c2 = c2 + 1
                r2 = r2 + 1
        return pool_out
    
    import skimage.data
    import numpy
    import matplotlib
    import matplotlib.pyplot as plt
    import NumPyCNN as numpycnn
    
    # 读取图像
    img = skimage.data.chelsea()
    # 转成灰度图像
    img = skimage.color.rgb2gray(img)
    
    # 初始化卷积核
    l1_filter = numpy.zeros((2, 3, 3))
    # 检测垂直边缘
    l1_filter[0, :, :] = numpy.array([[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]])
    # 检测水平边缘
    l1_filter[1, :, :] = numpy.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]]])
    
    """
    第一个卷积层
    """
    # 卷积操作
    l1_feature_map = numpycnn.conv(img, l1_filter)
    # ReLU
    l1_feature_map_relu = numpycnn.relu(l1_feature_map)
    # Pooling
    l1_feature_map_relu_pool = numpycnn.pooling(l1_feature_map_relu, 2, 2)
    
    """
    第二个卷积层
    """
    # 初始化卷积核
    l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])
    # 卷积操作
    l2_feature_map = numpycnn.conv(l1_feature_map_relu_pool, l2_filter)
    # ReLU
    l2_feature_map_relu = numpycnn.relu(l2_feature_map)
    # Pooling
    l2_feature_map_relu_pool = numpycnn.pooling(l2_feature_map_relu, 2, 2)
    
    """
    第三个卷积层
    """
    # 初始化卷积核
    l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])
    # 卷积操作
    l3_feature_map = numpycnn.conv(l2_feature_map_relu_pool, l3_filter)
    # ReLU
    l3_feature_map_relu = numpycnn.relu(l3_feature_map)
    # Pooling
    l3_feature_map_relu_pool = numpycnn.pooling(l3_feature_map_relu, 2, 2)
    
    """
    结果可视化
    """
    fig0, ax0 = plt.subplots(nrows=1, ncols=1)
    ax0.imshow(img).set_cmap("gray")
    ax0.set_title("Input Image")
    ax0.get_xaxis().set_ticks([])
    ax0.get_yaxis().set_ticks([])
    plt.savefig("in_img1.png", bbox_inches="tight")
    plt.close(fig0)
    
    # 第一层
    fig1, ax1 = plt.subplots(nrows=3, ncols=2)
    ax1[0, 0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray")
    ax1[0, 0].get_xaxis().set_ticks([])
    ax1[0, 0].get_yaxis().set_ticks([])
    ax1[0, 0].set_title("L1-Map1")
    
    ax1[0, 1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray")
    ax1[0, 1].get_xaxis().set_ticks([])
    ax1[0, 1].get_yaxis().set_ticks([])
    ax1[0, 1].set_title("L1-Map2")
    
    ax1[1, 0].imshow(l1_feature_map_relu[:, :, 0]).set_cmap("gray")
    ax1[1, 0].get_xaxis().set_ticks([])
    ax1[1, 0].get_yaxis().set_ticks([])
    ax1[1, 0].set_title("L1-Map1ReLU")
    
    ax1[1, 1].imshow(l1_feature_map_relu[:, :, 1]).set_cmap("gray")
    ax1[1, 1].get_xaxis().set_ticks([])
    ax1[1, 1].get_yaxis().set_ticks([])
    ax1[1, 1].set_title("L1-Map2ReLU")
    
    ax1[2, 0].imshow(l1_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
    ax1[2, 0].get_xaxis().set_ticks([])
    ax1[2, 0].get_yaxis().set_ticks([])
    ax1[2, 0].set_title("L1-Map1ReLUPool")
    
    ax1[2, 1].imshow(l1_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
    ax1[2, 0].get_xaxis().set_ticks([])
    ax1[2, 0].get_yaxis().set_ticks([])
    ax1[2, 1].set_title("L1-Map2ReLUPool")
    
    plt.savefig("L1.png", bbox_inches="tight")
    plt.close(fig1)
    
    # 第二层
    fig2, ax2 = plt.subplots(nrows=3, ncols=3)
    ax2[0, 0].imshow(l2_feature_map[:, :, 0]).set_cmap("gray")
    ax2[0, 0].get_xaxis().set_ticks([])
    ax2[0, 0].get_yaxis().set_ticks([])
    ax2[0, 0].set_title("L2-Map1")
    
    ax2[0, 1].imshow(l2_feature_map[:, :, 1]).set_cmap("gray")
    ax2[0, 1].get_xaxis().set_ticks([])
    ax2[0, 1].get_yaxis().set_ticks([])
    ax2[0, 1].set_title("L2-Map2")
    
    ax2[0, 2].imshow(l2_feature_map[:, :, 2]).set_cmap("gray")
    ax2[0, 2].get_xaxis().set_ticks([])
    ax2[0, 2].get_yaxis().set_ticks([])
    ax2[0, 2].set_title("L2-Map3")
    
    ax2[1, 0].imshow(l2_feature_map_relu[:, :, 0]).set_cmap("gray")
    ax2[1, 0].get_xaxis().set_ticks([])
    ax2[1, 0].get_yaxis().set_ticks([])
    ax2[1, 0].set_title("L2-Map1ReLU")
    
    ax2[1, 1].imshow(l2_feature_map_relu[:, :, 1]).set_cmap("gray")
    ax2[1, 1].get_xaxis().set_ticks([])
    ax2[1, 1].get_yaxis().set_ticks([])
    ax2[1, 1].set_title("L2-Map2ReLU")
    
    ax2[1, 2].imshow(l2_feature_map_relu[:, :, 2]).set_cmap("gray")
    ax2[1, 2].get_xaxis().set_ticks([])
    ax2[1, 2].get_yaxis().set_ticks([])
    ax2[1, 2].set_title("L2-Map3ReLU")
    
    ax2[2, 0].imshow(l2_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
    ax2[2, 0].get_xaxis().set_ticks([])
    ax2[2, 0].get_yaxis().set_ticks([])
    ax2[2, 0].set_title("L2-Map1ReLUPool")
    
    ax2[2, 1].imshow(l2_feature_map_relu_pool[:, :, 1]).set_cmap("gray")
    ax2[2, 1].get_xaxis().set_ticks([])
    ax2[2, 1].get_yaxis().set_ticks([])
    ax2[2, 1].set_title("L2-Map2ReLUPool")
    
    ax2[2, 2].imshow(l2_feature_map_relu_pool[:, :, 2]).set_cmap("gray")
    ax2[2, 2].get_xaxis().set_ticks([])
    ax2[2, 2].get_yaxis().set_ticks([])
    ax2[2, 2].set_title("L2-Map3ReLUPool")
    
    plt.savefig("L2.png", bbox_inches="tight")
    plt.close(fig2)
    
    # 第三层
    fig3, ax3 = plt.subplots(nrows=1, ncols=3)
    ax3[0].imshow(l3_feature_map[:, :, 0]).set_cmap("gray")
    ax3[0].get_xaxis().set_ticks([])
    ax3[0].get_yaxis().set_ticks([])
    ax3[0].set_title("L3-Map1")
    
    ax3[1].imshow(l3_feature_map_relu[:, :, 0]).set_cmap("gray")
    ax3[1].get_xaxis().set_ticks([])
    ax3[1].get_yaxis().set_ticks([])
    ax3[1].set_title("L3-Map1ReLU")
    
    ax3[2].imshow(l3_feature_map_relu_pool[:, :, 0]).set_cmap("gray")
    ax3[2].get_xaxis().set_ticks([])
    ax3[2].get_yaxis().set_ticks([])
    ax3[2].set_title("L3-Map1ReLUPool")
    
    plt.savefig("L3.png", bbox_inches="tight")
    plt.close(fig3)
    
  • 相关阅读:
    javaSE基础(三)
    javaSE基础(二)
    javaSE基础(一)
    文件目录爬虫
    前自增 与 后自增
    查找 与 排序 总结
    python 使用 grpc
    python3.7 安装 uwsgi
    go
    go
  • 原文地址:https://www.cnblogs.com/chenxiangzhen/p/10384955.html
Copyright © 2011-2022 走看看