zoukankan      html  css  js  c++  java
  • 使用卷积神经网络CNN完成验证码识别

    gen_sample_by_captcha.py 生成验证码图片

    # -*- coding: UTF-8 -*-
    """
    使用captcha lib生成验证码(前提:pip install captcha)
    """
    from captcha.image import ImageCaptcha
    import os
    import random
    import time
    
    
    def gen_special_img(text, file_path):
        # 生成img文件
        generator = ImageCaptcha(width=width, height=height)  # 指定大小
        img = generator.generate_image(text)  # 生成图片
        img.save(file_path)  # 保存图片
    
    
    if __name__ == '__main__':
        # 配置参数
        root_dir = "../sample/origin/"  # 图片储存路径
        image_suffix = "png"  # 图片储存后缀
        characters = "0123456789"  # 图片上显示的字符集
        # characters = "0123456789abcdefghijklmnopqrstuvwxyz"
        count = 10000  # 生成多少张样本
        char_count = 4  # 图片上的字符数量
    
        # 设置图片高度和宽度
        width = 100
        height = 60
    
        # 判断文件夹是否存在
        if not os.path.exists(root_dir):
            os.mkdir(root_dir)
    
        for i in range(count):
            text = ""
            for j in range(char_count):
                text += random.choice(characters)
            timec = str(time.time()).replace(".", "")
            p = os.path.join(root_dir, "{}_{}.{}".format(text, timec, image_suffix))
            gen_special_img(text, p)
    

    sample.py 配置文件

    from easydict import EasyDict
    import os
    import json
    
    # 可以使得以属性的方式去访问字典的值
    sample_conf = EasyDict()
    
    # 图片文件夹
    sample_conf.origin_image_dir = "./sample/origin/"
    sample_conf.train_image_dir = "./sample/train/"
    sample_conf.test_image_dir = "./sample/test/"
    sample_conf.api_image_dir = "./sample/api/"
    sample_conf.online_image_dir = "./sample/online/"
    sample_conf.local_image_dir = "./sample/local/"
    
    # 模型文件夹
    sample_conf.model_save_dir = "./model/"
    
    # 图片相关参数
    sample_conf.image_width = 100
    sample_conf.image_height = 60
    sample_conf.max_captcha = 4
    sample_conf.image_suffix = "png"
    
    # 验证码字符相关参数
    sample_conf.char_set = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',
                            'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
    # char_set = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
    # char_set = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
    
    use_labels_json_file = False
    if use_labels_json_file:
        if os.path.exists("gen_image/labels.json"):
            with open("gen_image/labels.json", "r") as f:
                content = f.read()
                if content:
                    sample_conf.char_set = json.loads(content)
                else:
                    pass
        else:
            pass
    
    sample_conf.remote_url = "https://www.xxxxx.com/getImg"
    
    

    verify_and_split_data.py

    """
    验证图片尺寸和划分测试集(5%)和训练集(95%)
    """
    from PIL import Image
    import random
    import os
    import shutil
    from sample import sample_conf
    
    
    def verify(origin_dir, real_width, real_height, image_suffix):
        """
        校验图片大小
        :return:
        """
        print("开始校验原始图片集")
        # 图片真实尺寸
        real_size = (real_width, real_height)
        # 图片名称列表和数量
        img_list = os.listdir(origin_dir)
        total_count = len(img_list)
        print("原始集共有图片: {}张".format(total_count))
    
        # 无效图片列表
        bad_img = []
    
        # 遍历所有图片进行验证
        for index, img_name in enumerate(img_list):
            file_path = os.path.join(origin_dir, img_name)
            # 过滤图片不正确的后缀
            if not img_name.endswith(image_suffix):
                bad_img.append((index, img_name, "文件后缀不正确"))
                continue
    
            # 过滤图片标签不标准的情况
            prefix, posfix = img_name.split("_")
            if prefix == "" or posfix == "":
                bad_img.append((index, img_name, "图片标签异常"))
                continue
    
            # 图片无法正常打开
            try:
                img = Image.open(file_path)
            except OSError:
                bad_img.append((index, img_name, "图片无法正常打开"))
                continue
    
            # 图片尺寸有异常
            if real_size == img.size:
                print("{} pass".format(index), end='
    ')
            else:
                bad_img.append((index, img_name, "图片尺寸异常为:{}".format(img.size)))
    
        print("====以下{}张图片有异常====".format(len(bad_img)))
        if bad_img:
            for b in bad_img:
                print("[第{}张图片] [{}] [{}]".format(b[0], b[1], b[2]))
        else:
            print("未发现异常(共 {} 张图片)".format(len(img_list)))
        print("========end
    ")
        return bad_img
    
    
    def split(origin_dir, train_dir, test_dir, bad_imgs):
        """
        分离训练集和测试集
        :return:
        """
        print("开始分离原始图片集为:测试集(5%)和训练集(95%)")
    
        # 图片名称列表和数量
        img_list = os.listdir(origin_dir)
        for img in bad_imgs:
            img_list.remove(img)
        total_count = len(img_list)
        print("共分配{}张图片到训练集和测试集,其中{}张为异常留在原始目录".format(total_count, len(bad_imgs)))
    
        # 创建文件夹
        if not os.path.exists(train_dir):
            os.mkdir(train_dir)
    
        if not os.path.exists(test_dir):
            os.mkdir(test_dir)
    
        # 测试集
        test_count = int(total_count * 0.05)
        test_set = set()
        for i in range(test_count):
            while True:
                file_name = random.choice(img_list)
                if file_name in test_set:
                    pass
                else:
                    test_set.add(file_name)
                    img_list.remove(file_name)
                    break
    
        test_list = list(test_set)
        print("测试集数量为:{}".format(len(test_list)))
        for file_name in test_list:
            src = os.path.join(origin_dir, file_name)
            dst = os.path.join(test_dir, file_name)
            shutil.move(src, dst)
    
        # 训练集
        train_list = img_list
        print("训练集数量为:{}".format(len(train_list)))
        for file_name in train_list:
            src = os.path.join(origin_dir, file_name)
            dst = os.path.join(train_dir, file_name)
            shutil.move(src, dst)
    
        if os.listdir(origin_dir) == 0:
            print("migration done")
    
    
    def main():
        # 图片路径
        origin_dir = sample_conf["origin_image_dir"]
        train_dir = sample_conf["train_image_dir"]
        test_dir = sample_conf["test_image_dir"]
        # 图片尺寸
        real_width = sample_conf["image_width"]
        real_height = sample_conf["image_height"]
        # 图片后缀
        image_suffix = sample_conf["image_suffix"]
    
        bad_images_info = verify(origin_dir, real_width, real_height, image_suffix)
        bad_imgs = []
        for info in bad_images_info:
            bad_imgs.append(info[1])
        split(origin_dir, train_dir, test_dir, bad_imgs)
    
    
    if __name__ == '__main__':
        main()
    
    

    train_model_v2.py 训练模型,训练过程中同时输出训练集和验证集的准确率

    # -*- coding: utf-8 -*-
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    import time
    from PIL import Image
    import random
    import os
    from sample import sample_conf
    from tensorflow.python.framework.errors_impl import NotFoundError
    
    
    # 设置以下环境变量可开启CPU识别
    # os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    # os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
    
    class TrainError(Exception):
        pass
    
    
    class TrainModel(object):
        def __init__(self, train_img_path, verify_img_path, char_set, model_save_dir, verify=False):
            # 模型路径
            self.model_save_dir = model_save_dir
    
            # 打乱文件顺序+校验图片格式
            self.train_img_path = train_img_path
            self.train_images_list = os.listdir(train_img_path)
    
            # 校验格式
            if verify:
                self.confirm_image_suffix()
    
            # 打乱文件顺序
            random.seed(time.time())
            random.shuffle(self.train_images_list)
    
            # 验证集文件
            self.verify_img_path = verify_img_path
            self.verify_images_list = os.listdir(verify_img_path)
    
            # 获得图片宽高和字符长度基本信息
            label, captcha_array = self.gen_captcha_text_image(train_img_path, self.train_images_list[0])
    
            captcha_shape = captcha_array.shape
            captcha_shape_len = len(captcha_shape)
            if captcha_shape_len == 3:
                image_height, image_width, channel = captcha_shape
                self.channel = channel
            elif captcha_shape_len == 2:
                image_height, image_width = captcha_shape
            else:
                raise TrainError("图片转换为矩阵时出错,请检查图片格式")
    
            # 初始化变量
            # 图片尺寸
            self.image_height = image_height
            self.image_width = image_width
            # 验证码长度(位数)
            self.max_captcha = len(label)
            # 验证码字符类别
            self.char_set = char_set
            self.char_set_len = len(char_set)
    
            # 相关信息打印
            print("-->图片尺寸: {} X {}".format(image_height, image_width))
            print("-->验证码长度: {}".format(self.max_captcha))
            print("-->验证码共{}类 {}".format(self.char_set_len, char_set))
            print("-->使用测试集为 {}".format(train_img_path))
            print("-->使验证集为 {}".format(verify_img_path))
    
            # tf初始化占位符
            self.X = tf.placeholder(tf.float32, [None, image_height * image_width])  # 特征向量
            self.Y = tf.placeholder(tf.float32, [None, self.max_captcha * self.char_set_len])  # 标签
            self.keep_prob = tf.placeholder(tf.float32)  # dropout值
            self.w_alpha = 0.01
            self.b_alpha = 0.1
    
            # test model input and output
            print(">>> Start model test")
            batch_x, batch_y = self.get_batch(0, size=100)
            print(">>> input batch images shape: {}".format(batch_x.shape))
            print(">>> input batch labels shape: {}".format(batch_y.shape))
    
        @staticmethod
        def gen_captcha_text_image(img_path, img_name):
            """
            返回一个验证码的array形式和对应的字符串标签
            :return:tuple (str, numpy.array)
            """
            # 标签
            label = img_name.split("_")[0]
            # 文件
            img_file = os.path.join(img_path, img_name)
            captcha_image = Image.open(img_file)
            captcha_array = np.array(captcha_image)  # 向量化
            return label, captcha_array
    
        @staticmethod
        def convert2gray(img):
            """
            图片转为灰度图,如果是3通道图则计算,单通道图则直接返回
            :param img:
            :return:
            """
            if len(img.shape) > 2:
                r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2]
                gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
                return gray
            else:
                return img
    
        def text2vec(self, text):
            """
            转标签为oneHot编码
            :param text: str
            :return: numpy.array
            """
            text_len = len(text)
            if text_len > self.max_captcha:
                raise ValueError('验证码最长{}个字符'.format(self.max_captcha))
    
            vector = np.zeros(self.max_captcha * self.char_set_len)
    
            for i, ch in enumerate(text):
                idx = i * self.char_set_len + self.char_set.index(ch)
                vector[idx] = 1
            return vector
    
        def get_batch(self, n, size=128):
            batch_x = np.zeros([size, self.image_height * self.image_width])  # 初始化
            batch_y = np.zeros([size, self.max_captcha * self.char_set_len])  # 初始化
    
            max_batch = int(len(self.train_images_list) / size)
            # print(max_batch)
            if max_batch - 1 < 0:
                raise TrainError("训练集图片数量需要大于每批次训练的图片数量")
            if n > max_batch - 1:
                n = n % max_batch
            s = n * size
            e = (n + 1) * size
            this_batch = self.train_images_list[s:e]
            # print("{}:{}".format(s, e))
    
            for i, img_name in enumerate(this_batch):
                label, image_array = self.gen_captcha_text_image(self.train_img_path, img_name)
                image_array = self.convert2gray(image_array)  # 灰度化图片
                batch_x[i, :] = image_array.flatten() / 255  # flatten 转为一维
                batch_y[i, :] = self.text2vec(label)  # 生成 oneHot
            return batch_x, batch_y
    
        def get_verify_batch(self, size=100):
            batch_x = np.zeros([size, self.image_height * self.image_width])  # 初始化
            batch_y = np.zeros([size, self.max_captcha * self.char_set_len])  # 初始化
    
            verify_images = []
            for i in range(size):
                verify_images.append(random.choice(self.verify_images_list))
    
            for i, img_name in enumerate(verify_images):
                label, image_array = self.gen_captcha_text_image(self.verify_img_path, img_name)
                image_array = self.convert2gray(image_array)  # 灰度化图片
                batch_x[i, :] = image_array.flatten() / 255  # flatten 转为一维
                batch_y[i, :] = self.text2vec(label)  # 生成 oneHot
            return batch_x, batch_y
    
        def confirm_image_suffix(self):
            # 在训练前校验所有文件格式
            print("开始校验所有图片后缀")
            for index, img_name in enumerate(self.train_images_list):
                print("{} image pass".format(index), end='
    ')
                if not img_name.endswith(sample_conf['image_suffix']):
                    raise TrainError('confirm images suffix:you request [.{}] file but get file [{}]'
                                     .format(sample_conf['image_suffix'], img_name))
            print("所有图片格式校验通过")
    
        def model(self):
            x = tf.reshape(self.X, shape=[-1, self.image_height, self.image_width, 1])
            print(">>> input x: {}".format(x))
    
            # 卷积层1
            wc1 = tf.get_variable(name='wc1', shape=[3, 3, 1, 32], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bc1 = tf.Variable(self.b_alpha * tf.random_normal([32]))
            conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, wc1, strides=[1, 1, 1, 1], padding='SAME'), bc1))
            conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            conv1 = tf.nn.dropout(conv1, self.keep_prob)
    
            # 卷积层2
            wc2 = tf.get_variable(name='wc2', shape=[3, 3, 32, 64], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bc2 = tf.Variable(self.b_alpha * tf.random_normal([64]))
            conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, wc2, strides=[1, 1, 1, 1], padding='SAME'), bc2))
            conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            conv2 = tf.nn.dropout(conv2, self.keep_prob)
    
            # 卷积层3
            wc3 = tf.get_variable(name='wc3', shape=[3, 3, 64, 128], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bc3 = tf.Variable(self.b_alpha * tf.random_normal([128]))
            conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, wc3, strides=[1, 1, 1, 1], padding='SAME'), bc3))
            conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            conv3 = tf.nn.dropout(conv3, self.keep_prob)
            print(">>> convolution 3: ", conv3.shape)
            next_shape = conv3.shape[1] * conv3.shape[2] * conv3.shape[3]
    
            # 全连接层1
            wd1 = tf.get_variable(name='wd1', shape=[next_shape, 1024], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bd1 = tf.Variable(self.b_alpha * tf.random_normal([1024]))
            dense = tf.reshape(conv3, [-1, wd1.get_shape().as_list()[0]])
            dense = tf.nn.relu(tf.add(tf.matmul(dense, wd1), bd1))
            dense = tf.nn.dropout(dense, self.keep_prob)
    
            # 全连接层2
            wout = tf.get_variable('name', shape=[1024, self.max_captcha * self.char_set_len], dtype=tf.float32,
                                   initializer=tf.contrib.layers.xavier_initializer())
            bout = tf.Variable(self.b_alpha * tf.random_normal([self.max_captcha * self.char_set_len]))
            y_predict = tf.add(tf.matmul(dense, wout), bout)
            return y_predict
    
        def train_cnn(self):
            y_predict = self.model()
            print(">>> input batch predict shape: {}".format(y_predict.shape))
            print(">>> End model test")
    
            # 计算概率 损失
            cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y_predict, labels=self.Y))
    
            # 梯度下降
            optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost)
    
            # 计算准确率
            predict = tf.reshape(y_predict, [-1, self.max_captcha, self.char_set_len])  # 预测结果
            max_idx_p = tf.argmax(predict, 2)  # 预测结果
            max_idx_l = tf.argmax(tf.reshape(self.Y, [-1, self.max_captcha, self.char_set_len]), 2)  # 标签
            correct_pred = tf.equal(max_idx_p, max_idx_l)
            accuracy_char_count = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
            accuracy_image_count = tf.reduce_mean(tf.reduce_min(tf.cast(correct_pred, tf.float32), axis=1))
    
            # 模型保存对象
            saver = tf.train.Saver()
            with tf.Session() as sess:
                init = tf.global_variables_initializer()
                sess.run(init)
                # 恢复模型
                if os.path.exists(self.model_save_dir):
                    try:
                        saver.restore(sess, self.model_save_dir)
                    # 判断捕获model文件夹中没有模型文件的错误
                    except ValueError:
                        print("model文件夹为空,将创建新模型")
                else:
                    pass
                step = 1
                for i in range(3000):
                    batch_x, batch_y = self.get_batch(i, size=128)
                    # 梯度下降训练
                    _, cost_ = sess.run([optimizer, cost], feed_dict={self.X: batch_x, self.Y: batch_y, self.keep_prob: 0.75})
                    if step % 10 == 0:
                        # 基于训练集的测试
                        batch_x_test, batch_y_test = self.get_batch(i, size=100)
                        acc_char = sess.run(accuracy_char_count, feed_dict={self.X: batch_x_test, self.Y: batch_y_test, self.keep_prob: 1.})
                        acc_image = sess.run(accuracy_image_count, feed_dict={self.X: batch_x_test, self.Y: batch_y_test, self.keep_prob: 1.})
                        print("第{}次训练 >>> ".format(step))
                        print("[训练集] 字符准确率为 {:.5f} 图片准确率为 {:.5f} >>> loss {:.10f}".format(acc_char, acc_image, cost_))
    
                        # 基于验证集的测试
                        batch_x_verify, batch_y_verify = self.get_verify_batch(size=100)
                        acc_char = sess.run(accuracy_char_count, feed_dict={self.X: batch_x_verify, self.Y: batch_y_verify, self.keep_prob: 1.})
                        acc_image = sess.run(accuracy_image_count, feed_dict={self.X: batch_x_verify, self.Y: batch_y_verify, self.keep_prob: 1.})
                        print("[验证集] 字符准确率为 {:.5f} 图片准确率为 {:.5f} >>> loss {:.10f}".format(acc_char, acc_image, cost_))
    
                        # 准确率达到99%后保存并停止
                        if acc_image > 0.99:
                            saver.save(sess, self.model_save_dir)
                            print("验证集准确率达到99%,保存模型成功")
                            break
    
                    # 每训练500轮就保存一次
                    if i % 500 == 0:
                        saver.save(sess, self.model_save_dir)
                        print("定时保存模型成功")
                    step += 1
                saver.save(sess, self.model_save_dir)
    
    
    def main():
        train_image_dir = sample_conf["train_image_dir"]
        verify_image_dir = sample_conf["test_image_dir"]
        char_set = sample_conf["char_set"]
        model_save_dir = sample_conf["model_save_dir"]
        tm = TrainModel(train_image_dir, verify_image_dir, char_set, model_save_dir, verify=False)
        tm.train_cnn()  # 开始训练模型
    
    
    if __name__ == '__main__':
        main()
    
    

    训练结果

    第2960次训练 >>> 
    [训练集] 字符准确率为 0.87500 图片准确率为 0.61000 >>> loss 0.0337208398
    [验证集] 字符准确率为 0.81500 图片准确率为 0.45000 >>> loss 0.0337208398
    第2970次训练 >>> 
    [训练集] 字符准确率为 0.88500 图片准确率为 0.62000 >>> loss 0.0343154743
    [验证集] 字符准确率为 0.80750 图片准确率为 0.39000 >>> loss 0.0343154743
    第2980次训练 >>> 
    [训练集] 字符准确率为 0.89250 图片准确率为 0.65000 >>> loss 0.0298477933
    [验证集] 字符准确率为 0.80000 图片准确率为 0.38000 >>> loss 0.0298477933
    第2990次训练 >>> 
    [训练集] 字符准确率为 0.90250 图片准确率为 0.71000 >>> loss 0.0316790938
    [验证集] 字符准确率为 0.83500 图片准确率为 0.48000 >>> loss 0.0316790938
    第3000次训练 >>> 
    [训练集] 字符准确率为 0.89000 图片准确率为 0.69000 >>> loss 0.0330378339
    [验证集] 字符准确率为 0.83750 图片准确率为 0.53000 >>> loss 0.0330378339
    

    test_batch.py 批量验证

    # -*- coding: utf-8 -*-
    import tensorflow as tf
    import numpy as np
    import time
    from PIL import Image
    import random
    import os
    from sample import sample_conf
    
    
    class TestError(Exception):
        pass
    
    
    class TestBatch(object):
    
        def __init__(self, img_path, char_set, model_save_dir, total):
            # 模型路径
            self.model_save_dir = model_save_dir
            # 打乱文件顺序
            self.img_path = img_path
            self.img_list = os.listdir(img_path)
            random.seed(time.time())
            random.shuffle(self.img_list)
    
            # 获得图片宽高和字符长度基本信息
            label, captcha_array = self.gen_captcha_text_image()
    
            captcha_shape = captcha_array.shape
            captcha_shape_len = len(captcha_shape)
            if captcha_shape_len == 3:
                image_height, image_width, channel = captcha_shape
                self.channel = channel
            elif captcha_shape_len == 2:
                image_height, image_width = captcha_shape
            else:
                raise TestError("图片转换为矩阵时出错,请检查图片格式")
    
            # 初始化变量
            # 图片尺寸
            self.image_height = image_height
            self.image_width = image_width
            # 验证码长度(位数)
            self.max_captcha = len(label)
            # 验证码字符类别
            self.char_set = char_set
            self.char_set_len = len(char_set)
            # 测试个数
            self.total = total
    
            # 相关信息打印
            print("-->图片尺寸: {} X {}".format(image_height, image_width))
            print("-->验证码长度: {}".format(self.max_captcha))
            print("-->验证码共{}类 {}".format(self.char_set_len, char_set))
            print("-->使用测试集为 {}".format(img_path))
    
            # tf初始化占位符
            self.X = tf.placeholder(tf.float32, [None, image_height * image_width])  # 特征向量
            self.Y = tf.placeholder(tf.float32, [None, self.max_captcha * self.char_set_len])  # 标签
            self.keep_prob = tf.placeholder(tf.float32)  # dropout值
            self.w_alpha = 0.01
            self.b_alpha = 0.1
    
        def gen_captcha_text_image(self):
            """
            返回一个验证码的array形式和对应的字符串标签
            :return:tuple (str, numpy.array)
            """
            img_name = random.choice(self.img_list)
            # 标签
            label = img_name.split("_")[0]
            # 文件
            img_file = os.path.join(self.img_path, img_name)
            captcha_image = Image.open(img_file)
            captcha_array = np.array(captcha_image)  # 向量化
    
            return label, captcha_array
    
        @staticmethod
        def convert2gray(img):
            """
            图片转为灰度图,如果是3通道图则计算,单通道图则直接返回
            :param img:
            :return:
            """
            if len(img.shape) > 2:
                r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2]
                gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
                return gray
            else:
                return img
    
        def text2vec(self, text):
            """
            转标签为oneHot编码
            :param text: str
            :return: numpy.array
            """
            text_len = len(text)
            if text_len > self.max_captcha:
                raise ValueError('验证码最长{}个字符'.format(self.max_captcha))
    
            vector = np.zeros(self.max_captcha * self.char_set_len)
    
            for i, ch in enumerate(text):
                idx = i * self.char_set_len + self.char_set.index(ch)
                vector[idx] = 1
            return vector
    
        def model(self):
            x = tf.reshape(self.X, shape=[-1, self.image_height, self.image_width, 1])
            print(">>> input x: {}".format(x))
    
            # 卷积层1
            wc1 = tf.get_variable(name='wc1', shape=[3, 3, 1, 32], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bc1 = tf.Variable(self.b_alpha * tf.random_normal([32]))
            conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, wc1, strides=[1, 1, 1, 1], padding='SAME'), bc1))
            conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            conv1 = tf.nn.dropout(conv1, self.keep_prob)
    
            # 卷积层2
            wc2 = tf.get_variable(name='wc2', shape=[3, 3, 32, 64], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bc2 = tf.Variable(self.b_alpha * tf.random_normal([64]))
            conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, wc2, strides=[1, 1, 1, 1], padding='SAME'), bc2))
            conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            conv2 = tf.nn.dropout(conv2, self.keep_prob)
    
            # 卷积层3
            wc3 = tf.get_variable(name='wc3', shape=[3, 3, 64, 128], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bc3 = tf.Variable(self.b_alpha * tf.random_normal([128]))
            conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, wc3, strides=[1, 1, 1, 1], padding='SAME'), bc3))
            conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            conv3 = tf.nn.dropout(conv3, self.keep_prob)
            print(">>> convolution 3: ", conv3.shape)
            next_shape = conv3.shape[1]*conv3.shape[2]*conv3.shape[3]
    
            # 全连接层1
            wd1 = tf.get_variable(name='wd1', shape=[next_shape, 1024], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bd1 = tf.Variable(self.b_alpha * tf.random_normal([1024]))
            dense = tf.reshape(conv3, [-1, wd1.get_shape().as_list()[0]])
            dense = tf.nn.relu(tf.add(tf.matmul(dense, wd1), bd1))
            dense = tf.nn.dropout(dense, self.keep_prob)
    
            # 全连接层2
            wout = tf.get_variable('name', shape=[1024, self.max_captcha * self.char_set_len], dtype=tf.float32,
                                   initializer=tf.contrib.layers.xavier_initializer())
            bout = tf.Variable(self.b_alpha * tf.random_normal([self.max_captcha * self.char_set_len]))
            y_predict = tf.add(tf.matmul(dense, wout), bout)
            return y_predict
    
        def test_batch(self):
            y_predict = self.model()
            total = self.total
            right = 0
    
            saver = tf.train.Saver()
            with tf.Session() as sess:
                saver.restore(sess, self.model_save_dir)
                s = time.time()
                for i in range(total):
                    # test_text, test_image = gen_special_num_image(i)
                    test_text, test_image = self.gen_captcha_text_image()  # 随机
                    test_image = self.convert2gray(test_image)
                    test_image = test_image.flatten() / 255
    
                    predict = tf.argmax(tf.reshape(y_predict, [-1, self.max_captcha, self.char_set_len]), 2)
                    text_list = sess.run(predict, feed_dict={self.X: [test_image], self.keep_prob: 1.})
                    predict_text = text_list[0].tolist()
                    p_text = ""
                    for p in predict_text:
                        p_text += str(self.char_set[p])
                    print("origin: {} predict: {}".format(test_text, p_text))
                    if test_text == p_text:
                        right += 1
                    else:
                        pass
                e = time.time()
            rate = str(right/total) + "%"
            print("测试结果: {}/{}".format(right, total))
            print("{}个样本识别耗时{}秒,准确率{}".format(total, e-s, rate))
    
    
    def main():
        test_image_dir = sample_conf["test_image_dir"]
        model_save_dir = sample_conf["model_save_dir"]
        char_set = sample_conf["char_set"]
        total = 100
        tb = TestBatch(test_image_dir, char_set, model_save_dir, total)
        tb.test_batch()
    
    
    if __name__ == '__main__':
        main()
    
    

    程序结果

    origin: 4958 predict: 4958
    origin: 0409 predict: 0409
    origin: 1328 predict: 1228
    origin: 6181 predict: 6181
    origin: 7017 predict: 7002
    origin: 5355 predict: 5355
    origin: 1780 predict: 7180
    origin: 4122 predict: 4122
    测试结果: 46/100
    100个样本识别耗时3.113262891769409秒,准确率0.46%
    

    封装识别类

    # -*- coding: utf-8 -*-
    """
    识别图像的类,为了快速进行多次识别可以调用此类下面的方法:
    R = Recognizer(image_height, image_width, max_captcha)
    for i in range(10):
        r_img = Image.open(str(i) + ".jpg")
        t = R.rec_image(r_img)
    简单的图片每张基本上可以达到毫秒级的识别速度
    """
    import tensorflow as tf
    import numpy as np
    from PIL import Image
    from sample import sample_conf
    
    
    class Recognizer(object):
        def __init__(self, image_height, image_width, max_captcha, char_set, model_save_dir):
            self.w_alpha = 0.01
            self.b_alpha = 0.1
            self.image_height = image_height
            self.image_width = image_width
            self.max_captcha = max_captcha
            self.char_set = char_set
            self.char_set_len = len(self.char_set)
            self.model_save_dir = model_save_dir
    
            # 新建图和会话
            self.g = tf.Graph()
            self.sess = tf.Session(graph=self.g)
            # 使用指定的图和会话
            with self.g.as_default():
                # 迭代循环前,写出所有用到的张量的计算表达式,如果写在循环中,会发生内存泄漏,拖慢识别的速度
                # tf初始化占位符
                self.X = tf.placeholder(tf.float32, [None, self.image_height * self.image_width])  # 特征向量
                self.Y = tf.placeholder(tf.float32, [None, self.max_captcha * self.char_set_len])  # 标签
                self.keep_prob = tf.placeholder(tf.float32)  # dropout值
                # 加载网络和模型参数
                self.y_predict = self.model()
                self.predict = tf.argmax(tf.reshape(self.y_predict, [-1, self.max_captcha, self.char_set_len]), 2)
                saver = tf.train.Saver()
                with self.sess.as_default() as sess:
                    saver.restore(sess, self.model_save_dir)
    
        # def __del__(self):
        #     self.sess.close()
        #     print("session close")
    
        @staticmethod
        def convert2gray(img):
            """
            图片转为灰度图,如果是3通道图则计算,单通道图则直接返回
            :param img:
            :return:
            """
            if len(img.shape) > 2:
                r, g, b = img[:, :, 0], img[:, :, 1], img[:, :, 2]
                gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
                return gray
            else:
                return img
    
        def text2vec(self, text):
            """
            转标签为oneHot编码
            :param text: str
            :return: numpy.array
            """
            text_len = len(text)
            if text_len > self.max_captcha:
                raise ValueError('验证码最长{}个字符'.format(self.max_captcha))
    
            vector = np.zeros(self.max_captcha * self.char_set_len)
    
            for i, ch in enumerate(text):
                idx = i * self.char_set_len + self.char_set.index(ch)
                vector[idx] = 1
            return vector
    
        def model(self):
            x = tf.reshape(self.X, shape=[-1, self.image_height, self.image_width, 1])
            print(">>> input x: {}".format(x))
    
            # 卷积层1
            wc1 = tf.get_variable(name='wc1', shape=[3, 3, 1, 32], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bc1 = tf.Variable(self.b_alpha * tf.random_normal([32]))
            conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, wc1, strides=[1, 1, 1, 1], padding='SAME'), bc1))
            conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            conv1 = tf.nn.dropout(conv1, self.keep_prob)
    
            # 卷积层2
            wc2 = tf.get_variable(name='wc2', shape=[3, 3, 32, 64], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bc2 = tf.Variable(self.b_alpha * tf.random_normal([64]))
            conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, wc2, strides=[1, 1, 1, 1], padding='SAME'), bc2))
            conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            conv2 = tf.nn.dropout(conv2, self.keep_prob)
    
            # 卷积层3
            wc3 = tf.get_variable(name='wc3', shape=[3, 3, 64, 128], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bc3 = tf.Variable(self.b_alpha * tf.random_normal([128]))
            conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, wc3, strides=[1, 1, 1, 1], padding='SAME'), bc3))
            conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
            conv3 = tf.nn.dropout(conv3, self.keep_prob)
            print(">>> convolution 3: ", conv3.shape)
            next_shape = conv3.shape[1] * conv3.shape[2] * conv3.shape[3]
    
            # 全连接层1
            wd1 = tf.get_variable(name='wd1', shape=[next_shape, 1024], dtype=tf.float32,
                                  initializer=tf.contrib.layers.xavier_initializer())
            bd1 = tf.Variable(self.b_alpha * tf.random_normal([1024]))
            dense = tf.reshape(conv3, [-1, wd1.get_shape().as_list()[0]])
            dense = tf.nn.relu(tf.add(tf.matmul(dense, wd1), bd1))
            dense = tf.nn.dropout(dense, self.keep_prob)
    
            # 全连接层2
            wout = tf.get_variable('name', shape=[1024, self.max_captcha * self.char_set_len], dtype=tf.float32,
                                   initializer=tf.contrib.layers.xavier_initializer())
            bout = tf.Variable(self.b_alpha * tf.random_normal([self.max_captcha * self.char_set_len]))
            y_predict = tf.add(tf.matmul(dense, wout), bout)
            return y_predict
    
        def rec_image(self, img):
            # 读取图片
            img_array = np.array(img)
            test_image = self.convert2gray(img_array)
            test_image = test_image.flatten() / 255
            # 使用指定的图和会话
            with self.g.as_default():
                with self.sess.as_default() as sess:
                    text_list = sess.run(self.predict, feed_dict={self.X: [test_image], self.keep_prob: 1.})
    
            # 获取结果
            predict_text = text_list[0].tolist()
            p_text = ""
            for p in predict_text:
                p_text += str(self.char_set[p])
    
            # 返回识别结果
            return p_text
    
    
    def main():
        image_height = sample_conf["image_height"]
        image_width = sample_conf["image_width"]
        max_captcha = sample_conf["max_captcha"]
        char_set = sample_conf["char_set"]
        model_save_dir = sample_conf["model_save_dir"]
        R = Recognizer(image_height, image_width, max_captcha, char_set, model_save_dir)
        r_img = Image.open("./sample/test/0059_15553933348531582.png")
        t = R.rec_image(r_img)
        print(t)
    
    
    if __name__ == '__main__':
        main()
    
    

    使用flask写的提供在线识别功能的接口

    # -*- coding: UTF-8 -*-
    """
    构建flask接口服务
    接收 files={'image_file': ('captcha.jpg', BytesIO(bytes), 'application')} 参数识别验证码
    需要配置参数:
        image_height = 40
        image_width = 80
        max_captcha = 4
    """
    import json
    from io import BytesIO
    import os
    from recognition_object import Recognizer
    
    import time
    from flask import Flask, request, jsonify, Response
    from PIL import Image
    from sample import sample_conf
    
    # 默认使用CPU
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
    
    # 配置参数
    image_height = sample_conf["image_height"]
    image_width = sample_conf["image_width"]
    max_captcha = sample_conf["max_captcha"]
    api_image_dir = sample_conf["api_image_dir"]
    model_save_dir = sample_conf["model_save_dir"]
    image_suffix = sample_conf["image_suffix"]  # 文件后缀
    char_set = sample_conf["char_set"]
    
    # Flask对象
    app = Flask(__name__)
    basedir = os.path.abspath(os.path.dirname(__file__))
    
    # 生成识别对象,需要配置参数
    R = Recognizer(image_height, image_width, max_captcha, char_set, model_save_dir)
    
    # 如果你需要使用多个模型,可以参照原有的例子配置路由和编写逻辑
    # Q = Recognizer(image_height, image_width, max_captcha, char_set, model_save_dir)
    
    
    def response_headers(content):
        resp = Response(content)
        resp.headers['Access-Control-Allow-Origin'] = '*'
        return resp
    
    
    @app.route('/b', methods=['POST'])
    def up_image():
        if request.method == 'POST' and request.files.get('image_file'):
            timec = str(time.time()).replace(".", "")
            file = request.files.get('image_file')
            img = file.read()
            img = BytesIO(img)
            img = Image.open(img, mode="r")
            # username = request.form.get("name")
            print("接收图片尺寸: {}".format(img.size))
            s = time.time()
            value = R.rec_image(img)
            e = time.time()
            print("识别结果: {}".format(value))
            # 保存图片
            print("保存图片: {}{}_{}.{}".format(api_image_dir, value, timec, image_suffix))
            file_name = "{}_{}.{}".format(value, timec, image_suffix)
            file_path = os.path.join(api_image_dir + file_name)
            img.save(file_path)
            result = {
                'time': timec,   # 时间戳
                'value': value,  # 预测的结果
                'speed_time(ms)': int((e - s) * 1000)  # 识别耗费的时间
            }
            img.close()
            return jsonify(result)
        else:
            content = json.dumps({"error_code": "1001"})
            resp = response_headers(content)
            return resp
    
    
    if __name__ == '__main__':
        app.run(debug=True, port=9999)
    
    

    为了测试这个接口是否工作正常,还得写一个页面

    <form id="form1" method="post" action=" http://127.0.0.1:9999/b" enctype="multipart/form-data">
        <div>
            <input id="image_file" type="file" name="image_file"/>
            <input type="submit">提交</input>
        </div>
    </form>
    

    测试结果

    {
      "speed_time(ms)": 13, 
      "time": "15553999504148507", 
      "value": "0069"
    }
    
  • 相关阅读:
    ajaxfileupload
    ASP.NET从MVC5升级到MVC6
    jvm(13)-线程安全与锁优化(转)
    成为顶尖自由职业者必备的7个软技能之一:沟通(转)
    在ubuntu安装Phabricator(转)
    查看mysql当前表使用的存储引擎(转)
    在Java中如何使用jdbc连接Sql2008数据库(转)
    漂亮的ActionBar效果
    Android smartimageview网络图片查看器
    Android 图板之保存图像
  • 原文地址:https://www.cnblogs.com/chenxiangzhen/p/10717694.html
Copyright © 2011-2022 走看看