zoukankan      html  css  js  c++  java
  • Error Message – The index ” is dependent on column ”.ALTER TABLE ALTER COLUMN ” failed because one or more objects access this column.

    It is always annoying when we get a request to change the datatype of an existing column for many reason. The changes are due to business reason or bad design or anything. But, when we change to accommodate, we need to do lots of analysis to ascertain the impact of the change.

    Here, we are going to explain a case, changing datatype size varchar (n) to varchar(max). This blog ONLY explains the context of changing the datatype not the impact of the change in terms of performance.

    
    Create Table ColumnDatatypeChange (Col1 int,Col2 varchar(1))
    Insert into ColumnDatatypeChange Select 1 , 'L'
    create Index IX_ColumnDatatypeChange on ColumnDatatypeChange(Col1) include(Col2)
    Alter Table ColumnDatatypeChange Alter column Col2 Varchar(MAX) -- This statement will fail
    

    On executing the below snippet, we get the below error message. (Please note that an index is dependent on column)

    Error Message:
    Msg 5074, Level 16, State 1, Line 8
    The index ‘IX_ColumnDatatypeChange’ is dependent on column ‘Col2’.
    Msg 4922, Level 16, State 9, Line 8
    ALTER TABLE ALTER COLUMN Col2 failed because one or more objects access this column.

    However, when we do the change from MAX to 8000, it gets executed without any issue.

    
    Create Table ColumnDatatypeChange (Col1 int,Col2 varchar(1))
    Insert into ColumnDatatypeChange Select 1 , 'L'
    create Index IX_ColumnDatatypeChange on ColumnDatatypeChange(Col1) include(Col2)
    Alter Table ColumnDatatypeChange Alter column Col2 Varchar(8000) -- This statement will succeed
    

    Reason:

    The reason for this behavior is due to the change from non-max type to a max type. SQL Server considers this change as dropping a column and adding a new column. Internally, the non-max and max types do not share the same storage types (Row-Overflow vs. LOB allocation units). Hence, this change needs to update every row and move the data from dropped column to newly added column. However, if you see for non-max type change, they share the same storage (either in-row or in the row-overflow allocation unit), so no issues with in-place update, that mean, no need to drop the dependent(index in this case).

    Resolution:

    1. Drop the index and change the column size followed by adding the index back to the table

    
    Drop Index IX_ColumnDatatypeChange on ColumnDatatypeChange
    Alter Table ColumnDatatypeChange Alter column Col2 Varchar(MAX)
    create Index IX_ColumnDatatypeChange on ColumnDatatypeChange(Col1) include(Col2)
    

    2. Analyze and try to avoid the size to MAX (if possible)

  • 相关阅读:
    设计模式——模板方法模式
    设计模式——适配器模式
    设计模式——策略模式
    设计模式——工厂模式
    设计模式——代理模式
    设计模式——单例模式
    设计模式——总纲
    Hadoop的safeMode
    MapReduce中Combiner规约的作用以及不能作为MR标配的原因
    hdfs shell
  • 原文地址:https://www.cnblogs.com/chucklu/p/14899148.html
Copyright © 2011-2022 走看看