zoukankan      html  css  js  c++  java
  • bzoj2002 [Hnoi2010]Bounce 弹飞绵羊【分块】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2002

    这一题除了LCT解法,还有一种更巧妙,代码量更少的解法,就是分块。先想,如果仅仅记录每个节点需要几步可以弹飞,就可以做到O(1)查询O(n)修改;如果仅仅记录每个节点弹力洗漱,就可以做到O(n)查询O(1)修改。这会不会给人一种随机访问数组与链表的感觉呢?如果把n个弹簧分成√n块,记录块里每个弹簧需要几步才能跳出这一个块,并且记录跳出这个块后落到了哪,这样子查询以及修改复杂度都是O(√n)了。

    #include <cstdio>
    #include <cmath>
    
    const int maxn = 200005;
    
    int n, m, a[maxn], t1, t2, t3, siz, zuihou, kaishi, to[maxn], stp[maxn];
    
    inline int qry(int pos) {
    	int rt = 0;
    	while (~pos) {
    		rt += stp[pos];
    		pos = to[pos];
    	}
    	return rt;
    }
    inline void upd(int pos, int data) {
    	kaishi = pos / siz * siz;
    	zuihou = (pos / siz + 1) * siz - 1;
    	a[pos] = data;
    	for (int i = pos; i >= kaishi; --i) {
    		if (i + a[i] >= n) {
    			to[i] = -1;
    			stp[i] = 1;
    		}
    		else if (i + a[i] > zuihou) {
    			to[i] = i + a[i];
    			stp[i] = 1;
    		}
    		else {
    			to[i] = to[i + a[i]];
    			stp[i] = stp[i + a[i]] + 1;
    		}
    	}
    }
    
    int main(void) {
    	//freopen("in.txt", "r", stdin);
    	scanf("%d", &n);
    	siz = (int)sqrt((float)n + 0.5f);
    	for (int i = 0; i < n; ++i) {
    		scanf("%d", a + i);
    	}
    	for (int i = n - 1; ~i; --i) {
    		zuihou = (i / siz + 1) * siz - 1;
    		if (i + a[i] >= n) {
    			to[i] = -1;
    			stp[i] = 1;
    		}
    		else if (i + a[i] > zuihou) {
    			to[i] = i + a[i];
    			stp[i] = 1;
    		}
    		else {
    			to[i] = to[i + a[i]];
    			stp[i] = stp[i + a[i]] + 1;
    		}
    	}
    	scanf("%d", &m);
    	while (m--) {
    		scanf("%d%d", &t1, &t2);
    		if (t1 == 1) {
    			printf("%d
    ", qry(t2));
    		}
    		else {
    			scanf("%d", &t3);
    			upd(t2, t3);
    		}
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    迭代器
    逻辑量词
    How to distinguish between strings in heap or literals?
    Is the “*apply” family really not vectorized?
    power of the test
    The Most Simple Introduction to Hypothesis Testing
    析构函数允许重载吗?
    C++中析构函数的作用
    在C#中的构造函数和解析函数
    c++构造函数与析构函数
  • 原文地址:https://www.cnblogs.com/ciao-sora/p/6099077.html
Copyright © 2011-2022 走看看