zoukankan      html  css  js  c++  java
  • 70.Climbing Stairs

    题目链接:https://leetcode.com/problems/climbing-stairs/description/

    题目大意:爬楼梯问题,一共花费n步爬到楼顶,一次可以爬一个台阶或两个台阶,求出一共有多少种方法可以爬到楼顶。

    此题其实是裴波那挈数列问题。

    法一:动规公式:fib[n] = fib[n - 1] + fib[n - 2]。用for循环数组来求fib[n],将其返回既是结果。代码如下(耗时0ms):

     1     public int climbStairs(int n) {
     2         int[] fib = new int[1000];
     3         fib[0] = 1;
     4         fib[1] = 1;
     5         fib[2] = 2;
     6         for(int i = 3; i <= n; i++) {
     7             fib[i] = fib[i - 1] + fib[i - 2];
     8         }
     9         return fib[n];
    10     }
    View Code

    法二(超时):直接递归,超时了,而且递归栈的深度也是一个问题。代码如下:

    1 public int climbStairs(int n) {
    2         if(n == 0 || n == 1) {
    3             return 1;
    4         }
    5         else if(n == 2) {
    6             return 2;
    7         }
    8         return climbStairs(n - 1) + climbStairs(n - 2);
    9     }
    View Code

    法三(借鉴):其实是法二的改进版,记忆性递归,用数组记录已经计算过的fib[i],如果已经计算过则直接返回不用再继续递归。代码如下(耗时0ms):

     1 public int climbStairs(int n) {
     2         int[] fib = new int[1000];
     3         for(int i = 0; i <= n; i++) {
     4             fib[i] = 0;
     5         }
     6         return fib(fib, n);
     7     }
     8     
     9     public int fib(int[] fib, int n) {
    10         if(n == 0 || n == 1) {
    11             return 1;
    12         }
    13         else if(n == 2) {
    14             return 2;
    15         }
    16         if(fib[n] != 0) {
    17             return fib[n];
    18         }
    19         else {
    20             fib[n] = fib(fib, n - 1) + fib(fib, n - 2);
    21             return fib[n];
    22         }
    23     }
    View Code

    快速幂知识点:

    快速幂:http://www.cnblogs.com/CXCXCXC/p/4641812.html

    快速幂取模:http://www.cnblogs.com/lj-1568/p/4754336.html

     借鉴:   http://blog.csdn.net/hanleijun/article/details/24550065

    https://leetcode.com/problems/climbing-stairs/solution/

     1 package problem_70;
     2 
     3 public class MatrixTest {
     4 
     5     static int[][] matrix;
     6     
     7     public static void main(String[] args) {
     8         init(2);  
     9         matrix[0][0] = 1;  
    10         matrix[0][1] = 1;  
    11         matrix[1][0] = 1;  
    12         matrix[1][1] = 0;  
    13         int[][] temp = new int[matrix.length][matrix.length];  
    14         temp = pow(4);  
    15         for (int[] a : temp) {  
    16             for (int b : a) {  
    17                 System.out.print(b + " ");  
    18             }  
    19             System.out.println();  
    20         }  
    21         System.out.println("斐波那契数列的fn值为:" + temp[0][1]);  
    22     }
    23     
    24     //初始化矩阵
    25     public static void init(int n) {  
    26         matrix = new int[n][n];  
    27     }  
    28   
    29     //矩阵相乘
    30     public static int[][] matrixMulti(int[][] m, int[][] n) {  
    31         int[][] temp = new int[matrix.length][matrix.length];  
    32         for (int k = 0; k < matrix.length; k++) {  
    33             for (int i = 0; i < matrix.length; i++) {  
    34                 for (int j = 0; j < matrix.length; j++) {  
    35                     temp[k][i] += m[k][j] * n[j][i];  
    36                 }  
    37             }  
    38         }  
    39         return temp;  
    40     }  
    41   
    42     //矩阵快速幂
    43     public static int[][] pow(int n) {  
    44         int[][] temp = new int[matrix.length][matrix.length];  
    45         if (n == 1) {  
    46             return matrix;  
    47         } else {  
    48             if (n % 2 != 0) {  //奇数
    49                 temp = pow((n - 1) / 2);  
    50                 temp = matrixMulti(temp, temp);  
    51                 return matrixMulti(temp, matrix);  
    52             } else {  //偶数
    53                 temp = pow(n / 2);  
    54                 temp = matrixMulti(temp, temp);  
    55                 return temp;  
    56             }  
    57         }  
    58     }  
    59 }
    View Code

    法四(借鉴):数学方法

    1 public class Solution {
    2     public int climbStairs(int n) {
    3         double sqrt5=Math.sqrt(5);
    4         double fibn=Math.pow((1+sqrt5)/2,n+1)-Math.pow((1-sqrt5)/2,n+1);
    5         return (int)(fibn/sqrt5);
    6     }
    7 }
    View Code
  • 相关阅读:
    重温CLR(七 ) 属性和事件
    重温CLR(六)方法和参数
    KMP算法
    Webstorm 2019最新激活码
    bash: cd: too many arguments 报错
    mongoDB线上数据库连接报错记录
    常见的 eslint 基本报错信息
    git 查看项目代码统计命令
    npm 删除指定的某个包以及再次安装
    vue.config.js常用配置
  • 原文地址:https://www.cnblogs.com/cing/p/7722586.html
Copyright © 2011-2022 走看看