zoukankan      html  css  js  c++  java
  • POJ1845

    这还是一道综合了许多数论的知识点的,做完也涨了不少姿势

    但还是因为约数和公式这个鬼东西去找了度娘

    题意很简单,就是求(A^B)的约数之和(mod 9901)

    但是这种题意越是简单的题目越是坑人

    首先如果你不知道约数和公式就绝逼GG,然后由于有唯一分解定理这种东西撑腰,我们选择直接用公式.

    先分解质因数得到(n)个质因数(p_i)和它们出现的次数(t_i),然后约数和:

    (prod_{i=1}^{n} sum_{j=0}^{t[i]} {p_i}^j)

    然后我们考虑如何处理那个(sum_{j=0}^{t} {p}^j)

    首先我们可以发现这是一个等比数列,然后我们来对它进行转化,我们设(S=sum_{j=0}^{t} {p}^j ......(1)),则有

    (pS=sum_{j=1}^{t+1} {p}^j ......(2))

    我们((2)-(1))

    ((p-1)S=p^{t+1}-1)

    (S=frac{p^{t+1}-1}{p-1})

    所以我们上面用快速幂,下面用逆元即可,然后就解决了

    但其实这道题的坑点让人难以想象:

    1. (9901mid p-1)时不能用逆元,要特殊处理
    2. 因为这道题的次数不能取模,所以要涉及到两个long long的数相乘,但是由于取模所以不用高精,所以我们用二进制的方法(其实就是和快速幂一样的思想)来做快速乘
    3. 分解质因数的时候这个数可能本身就是质数(这个比较经典)

    然后我们就可以艹过去了

    CODE

    #include<cstdio>
    using namespace std;
    typedef long long LL;
    const LL S_N=10005,mod=9901;
    LL a,b,prime[S_N],t[S_N],ex,cnt,ans=1;
    bool vis[S_N];
    inline void Euler(LL m)
    {
    	register LL i,j; vis[1]=1;
    	for (i=2;i<m;++i)
    	{
    		if (!vis[i]) prime[++cnt]=i;
    		for (j=1;j<=cnt&&i*prime[j]<m;++j)
    		{
    			vis[i*prime[j]]=1;
    			if (!(i%prime[j])) break;
    		}
    	}
    }
    inline void resolve(LL x)
    {
    	register LL i;
    	for (i=1;i<=cnt;++i)
    	{
    		while (!(x%prime[i])) x/=prime[i],++t[i];
    		if (!(x^1)) break;
    	}
    	if (x^1) ex=x;
    }
    inline LL quick_mul(LL x,LL y,LL mod)
    {
    	LL tot=0;
    	while (y)
    	{
    		if (y&1) tot=(tot+x)%mod;
    		x=(x<<1)%mod; y>>=1;
    	}
    	return tot;
    }
    inline LL quick_pow(LL x,LL p,LL mod)
    {
    	LL tot=1;
    	while (p)
    	{
    		if (p&1) tot=quick_mul(tot,x,mod);
    		x=quick_mul(x,x,mod); p>>=1;
    	}
    	return tot;
    }
    inline LL inv(LL x)
    {
    	return quick_pow(x,mod-2,mod);
    }
    inline LL calc(LL p,LL t)
    {
    	return (((quick_pow(p,t,mod)-1+mod)%mod)*inv(p-1))%mod;
    }
    int main()
    {
    	Euler(S_N); scanf("%lld%lld",&a,&b); resolve(a);
    	for (register LL i=1;i<=cnt;++i)
    	if (t[i]) 
    	{
    		if ((prime[i]-1)%mod) ans=(ans*calc(prime[i],t[i]*b+1))%mod;
    		else ans=(ans*quick_pow(prime[i],t[i]*b+1,mod*(prime[i]-1))/(prime[i]-1))%mod; 
    	}
    	if (ex) 
    	{
    		if ((ex-1)%mod) ans=(ans*calc(ex,b+1))%mod;
    		else ans=(ans*quick_pow(ex,b+1,mod*(ex-1))/(ex-1))%mod; 
    	}
    	printf("%lld",ans);
    	return 0;
    }
    
  • 相关阅读:
    web-9. 动态网页与数据库-2
    web-9. 动态网页与数据库
    web-8. 多框架页面的创建
    web-7. 丰富页面的多媒体
    web-6. 组织页面的表格
    yocto术语二
    yocto术语
    linux source
    linux 添加环境变量
    ubuntu上网
  • 原文地址:https://www.cnblogs.com/cjjsb/p/9123220.html
Copyright © 2011-2022 走看看