zoukankan      html  css  js  c++  java
  • CF809E Surprise me!

    题意

    给你一棵(n) 个点的树,每个点有权值 (a_i)
    (a) 为一个排列

    [frac{1}{n(n−1)}​sum_{i=1}^{n}sum_{j=1}^{n}varphi(a_ia_j)dist_{i,j} ]

    (n≤200000)
    答案对 (10^9+7) 取模

    Sol

    莫比乌斯反演
    然后要求

    [sum_{d=1}^{n}frac{d}{varphi(d)}sum_{i=1}^{lfloorfrac{n}{d} floor}mu(i)F(i*d) ]

    其中
    (F(d)=sum_{d|a_i}sum_{d|a_j}varphi(a_i)varphi(a_j)dist(i,j))

    直接把(F(d))求出来,把满足要求的点拿出来建虚树(DP)就好了

    # include <bits/stdc++.h>
    # define IL inline
    # define RG register
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    
    IL int Input(){
    	RG int x = 0, z = 1; RG char c = getchar();
    	for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
    	for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
    	return x * z;
    }
    
    const int maxn(2e5 + 5);
    const int mod(1e9 + 7);
    
    typedef int Arr[maxn];
    
    int n, cnt, idx, tot, len, ret;
    Arr dfn, size, fa, first1, first2, s, deep, id;
    int lg[maxn << 1], st[20][maxn << 1];
    Arr a, prime, isprime, phi, mu, f, mark, sum;
    vector <int> p[maxn], fac[maxn];
    
    struct Edge{
    	int to, next;
    } e1[maxn << 1], e2[maxn];
    
    IL int Pow(RG ll x, RG ll y){
    	RG ll ret = 1;
    	for(; y; y >>= 1, x = x * x % mod)
    		if(y & 1) ret = ret * x % mod;
    	return ret;
    }
    
    IL void Add1(RG int u, RG int v){
    	e1[cnt] = (Edge){v, first1[u]}, first1[u] = cnt++;
    }
    
    IL void Add2(RG int u, RG int v){
    	e2[cnt] = (Edge){v, first2[u]}, first2[u] = cnt++;
    }
    
    IL void Dfs(RG int u){
    	size[u] = 1, dfn[u] = ++idx, st[0][id[u] = ++len] = u;
    	for(RG int i = 0, j = fac[a[u]].size(); i < j; ++i)
    		p[fac[a[u]][i]].push_back(u);
    	for(RG int e = first1[u]; e != -1; e = e1[e].next){
    		RG int v = e1[e].to;
    		if(!size[v]){
    			deep[v] = deep[u] + 1;
    			Dfs(v), size[u] += size[v];
    			fa[v] = u, st[0][++len] = u;
    		}
    	}
    }
    
    IL int Min(RG int x, RG int y){
    	return deep[x] < deep[y] ? x : y;
    }
    
    IL int LCA(RG int u, RG int v){
    	u = id[u], v = id[v];
    	if(u > v) swap(u, v);
    	RG int lgn = lg[v - u + 1];
    	return Min(st[lgn][u], st[lgn][v - (1 << lgn) + 1]);
    }
    
    IL int Dis(RG int u, RG int v){
    	RG int lca = LCA(u, v);
    	return deep[u] + deep[v] - 2 * deep[lca];
    }
    
    IL void Upd(RG int &x, RG int y){
    	x += y;
    	if(x >= mod) x -= mod;
    }
    
    IL void DP(RG int u){
    	sum[u] = mark[u] * phi[a[u]];
    	Upd(ret, mod - 1LL * sum[u] * sum[u] % mod * deep[u] % mod);
    	for(RG int e = first2[u]; e != -1; e = e2[e].next){
    		RG int v = e2[e].to;
    		DP(v);
    		Upd(ret, mod - 2LL * sum[u] * sum[v] % mod * deep[u] % mod);
    		Upd(sum[u], sum[v]);
    	}
    }
    
    IL int Calc(RG int x){
    	RG int l = p[x].size(), ret1 = 0, ret2 = 0, t = 0; cnt = 0;
    	for(RG int i = 0; i < l; ++i) first2[p[x][i]] = -1, mark[p[x][i]] = 1;
    	for(RG int i = 0; i < l; ++i){
    		RG int lca = s[t] ? LCA(s[t], p[x][i]) : 0;
    		if(lca == s[t]) s[++t] = p[x][i];
    		else{
    			while(t > 1 && deep[lca] <= deep[s[t - 1]]) Add2(s[t - 1], s[t]), --t;
    			if(s[t] != lca) first2[lca] = -1, Add2(lca, s[t]), s[t] = lca;
    			s[++t] = p[x][i];
    		}
    	}
    	while(t > 1) Add2(s[t - 1], s[t]), --t;
    	for(RG int i = 0; i < l; ++i){
    		Upd(ret1, phi[a[p[x][i]]]);
    		Upd(ret2, 1LL * deep[p[x][i]] * phi[a[p[x][i]]] % mod);
    	}
    	ret = 0;
    	DP(s[1]), Upd(ret, ret);
    	Upd(ret, 2LL * ret1 * ret2 % mod);
    	for(RG int i = 0; i < l; ++i) mark[p[x][i]] = 0;
    	return ret;
    }
    
    IL void Sieve(){
    	phi[1] = mu[1] = 1;
    	for(RG int i = 2; i <= n; ++i){
    		if(!isprime[i]) prime[++tot] = i, phi[i] = i - 1, mu[i] = -1;
    		for(RG int j = 1; j <= tot && i * prime[j] <= n; ++j){
    			isprime[i * prime[j]] = 1;
    			if(i % prime[j]){
    				phi[i * prime[j]] = phi[i] * phi[prime[j]];
    				mu[i * prime[j]] = -mu[i];
    			}
    			else{
    				phi[i * prime[j]] = phi[i] * prime[j];
    				mu[i * prime[j]] = 0;
    				break;
    			}
    		}
    	}
    	for(RG int i = 1; i <= n; ++i)
    		for(RG int j = 1; j * i <= n; ++j) fac[j * i].push_back(i);
    }
    
    int main(){
    	n = Input(), Sieve();
    	for(RG int i = 1; i <= n; ++i) first1[i] = first2[i] = -1, a[i] = Input();
    	for(RG int i = 1; i < n; ++i){
    		RG int u = Input(), v = Input();
    		Add1(u, v), Add1(v, u);
    	}
    	Dfs(1);
    	for(RG int i = 2; i <= len; ++i) lg[i] = lg[i >> 1] + 1;
    	for(RG int j = 1; j <= lg[len]; ++j)
    		for(RG int i = 1; i + (1 << j) - 1 <= len; ++i)
    			st[j][i] = Min(st[j - 1][i], st[j - 1][i + (1 << (j - 1))]);
    	for(RG int i = 1; i <= n; ++i) f[i] = Calc(i);
    	RG int ans = 0;
    	for(RG int i = 1; i <= n; ++i){
    		RG int ret = 0;
    		for(RG int j = 1, t = n / i; j <= t; ++j)
    			Upd(ret, 1LL * (mu[j] + mod) % mod * f[i * j] % mod);
    		ret = 1LL * ret * i % mod;
    		Upd(ans, 1LL * ret * Pow(phi[i], mod - 2) % mod);
    	}
    	ans = 1LL * ans * Pow(1LL * n * (n - 1) % mod, mod - 2) % mod;
    	printf("%d
    ", ans);
    	return 0;
    }
    
    
  • 相关阅读:
    ble_app_hrs心率程序 nrf51822
    2019.05.08 《Linux驱动开发入门与实战》
    函数指针
    typedef
    回调函数
    android2
    android1
    每周总结2
    HTML
    数组(续)
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/9114009.html
Copyright © 2011-2022 走看看