题意:
给定n(n<=60)个直线 ,长度<=1000;
可以转化为取 计算 ans = (sum + 10 - g) / ( n + 1) 在小于5的条件下的最大值,其中sum为任取n个的直线长度和,g是给定常数。
思路:
用类似背包的求法,把可能取到的结果用dp[i][j] = 1表示,其中i表示容量,j表示取了几个。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << " "; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl ' ' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) #define max3(a,b,c) max(max(a,b), c); #define min3(a,b,c) min(min(a,b), c); //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 9999973; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黄金分割点 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = 2009; int dp[maxn][100]; int a[100]; int main(){ int n,g; scanf("%d%d", &n, &g); for(int i=1; i<=n; i++) scanf("%d", &a[i]); dp[0][0] = 1; for(int i=1; i<=n; i++){ for(int j=n; j>=1; j--){ for(int k = maxn-1; k>=a[i]; k--){ dp[k][j] |= dp[k-a[i]][j-1]; } } } double ans = -1; for(int k = g - 10; k < maxn; k++){ for(int j=1; j<=n; j++){ if(dp[k][j] == 0) continue; // cout<<k << " " << j<<endl; double tmp = (k + 10 - g)*1.0 / (j+1.0); if(tmp <= 5.0) ans = max(ans, tmp); } } if(ans < 0) puts("impossible"); else printf("%.7f ", ans); return 0; }