zoukankan      html  css  js  c++  java
  • Codeforces Round #511 (Div. 2)-C

    传送门:http://codeforces.com/contest/1047/problem/C

    题意:

      给定n个数,问最少要去掉几个数,使得剩下的数gcd 大于原来n个数的gcd值。

    思路:

      自己一开始想把每个数的因子都找出来,找到这些因子中出现次数最多且因子大于n个数的最大公约数的,(n - 次数 )就是答案。但是复杂度是1e9,差那么一点。

    自己还是对素数筛理解的不够深。这道题可以枚举素数x,对于每个x,找到所有(a【i】/gcd(all)) 是x倍数的个数,就是一个次数。找这个次数的过程正好与素数筛的过程一致。

    #include <algorithm>
    #include  <iterator>
    #include  <iostream>
    #include   <cstring>
    #include   <cstdlib>
    #include   <iomanip>
    #include    <bitset>
    #include    <cctype>
    #include    <cstdio>
    #include    <string>
    #include    <vector>
    #include     <stack>
    #include     <cmath>
    #include     <queue>
    #include      <list>
    #include       <map>
    #include       <set>
    #include   <cassert>
    #include <unordered_map>
    using namespace std;
    //#pragma GCC optimize(3)
    //#pragma comment(linker, "/STACK:102400000,102400000")  //c++
    // #pragma GCC diagnostic error "-std=c++11"
    // #pragma comment(linker, "/stack:200000000")
    // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    // #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3)
    
    #define lson (l , mid , rt << 1)
    #define rson (mid + 1 , r , rt << 1 | 1)
    #define debug(x) cerr << #x << " = " << x << "
    ";
    #define pb push_back
    #define pq priority_queue
    #define max3(a,b,c) max(max(a,b),c)
    
    
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    typedef pair<ll ,ll > pll;
    typedef pair<int ,int > pii;
    typedef pair<int,pii> p3;
    
    //priority_queue<int> q;//这是一个大根堆q
    //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
    #define fi first
    #define se second
    //#define endl '
    '
    
    #define OKC ios::sync_with_stdio(false);cin.tie(0)
    #define FT(A,B,C) for(int A=B;A <= C;++A)  //用来压行
    #define REP(i , j , k)  for(int i = j ; i <  k ; ++i)
    //priority_queue<int ,vector<int>, greater<int> >que;
    
    const ll mos = 0x7FFFFFFF;  //2147483647
    const ll nmos = 0x80000000;  //-2147483648
    const int inf = 0x3f3f3f3f;       
    const ll inff = 0x3f3f3f3f3f3f3f3f; //18
    const int mod = 256;
    const double esp = 1e-8;
    const double PI=acos(-1.0);
    
    
    
    template<typename T>
    inline T read(T&x){
        x=0;int f=0;char ch=getchar();
        while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
        while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
        return x=f?-x:x;
    }
    
    
    /*-----------------------showtime----------------------*/
                const int maxn = 3e5+9;
                const int maxnum = 1.5e7+9;
                int a[maxn],cnt[maxnum];
                int p[maxn];
                bool prime[maxnum];
                int gcd(int a,int b){
                    if(b==0)return a;
                    return gcd(b, a%b);
                }
    
    int main(){
                int n,g=0;scanf("%d", &n);
                int ans = 0;
                for(int i=1; i<=n; i++){
                    scanf("%d", &a[i]);
                    g = gcd(g,a[i]);
                }
                for(int i=1; i<=n; i++)cnt[a[i]/g]++;
                int tot = 0;
    
                for(int i=2; i<maxnum; i++){
                    if(!prime[i]){
                        int x = i;int h = 0;
                        for(int j=i; j<maxnum; j+=i){
                            prime[j] = 1;
                            h += cnt[j]; 
                        }
                        ans = max(ans, h);
                    }
                }
                if(!ans)puts("-1");
                else printf("%d
    ", n-ans);
                return 0;
    }
    CF 1047 c
  • 相关阅读:
    菜根谭#77
    菜根谭#76
    菜根谭#75
    菜根谭#74
    菜根谭#73
    python迭代器
    python爬取网页数据
    yii2验证规则
    python装饰器的理解
    php中多图上传采用数组差集处理(array_diff,array_map)
  • 原文地址:https://www.cnblogs.com/ckxkexing/p/9691598.html
Copyright © 2011-2022 走看看