zoukankan      html  css  js  c++  java
  • HDU 1018 Big Number (log函数求数的位数)

    Problem Description
    In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
     

    Input
    Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
     

    Output
    The output contains the number of digits in the factorial of the integers appearing in the input.
     

    Sample Input
    2 10 20
     

    Sample Output
    7 19
     
    123456=1.23456*10^5;
        log10(123456)=5.09151;
        log10(1.23456*10^5)=log10(1.23456)+log10(10^5)=0.09151+5;
        故int(log10(n))+1 就是n的位数 
     1、x的位数=(int)log10(x)+1;
     2、斯特林近似公式:n!≈sqrt(2*π*n)*(n/e)^n。

    #include<iostream>
    #include<cmath>
    #include<cstdio>
    using namespace std;
    int main()
    {
    	int i,t,n;
    	double ans;
    	cin>>t;
    	while(t--){
    		cin>>n;
    		ans=0;
    		for(i=1;i<=n;i++) {
    			ans+=log10(double(i));
    		}
    		printf("%d
    ",int(ans)+1);
    	}
    	return 0;
    }


  • 相关阅读:
    Design Tutorial: Inverse the Problem
    The Number Off of FFF
    "Money, Money, Money"
    No Pain No Game
    Group
    Vases and Flowers
    Codeforces Round #466 (Div. 2)
    ST表
    Wildcard Matching
    HDOJ 3549 Dinitz
  • 原文地址:https://www.cnblogs.com/clnchanpin/p/6919631.html
Copyright © 2011-2022 走看看