zoukankan      html  css  js  c++  java
  • Jetson Nano TX1 TX2 Xavier

    The Jetson line of embedded Linux AI and computer vision compute modules and devkits from NVIDIA:

    • Jetson TK1: single-board 5" x 5" computer featuring Tegra K1 SOC (quad-core 32-bit Cortex-A15 + 192-core Kepler GPU), 2GB DDR3, and 8GB eMMC.
    • Jetson TX1: carrier-board + compute module featuring Tegra X1 SOC (quad-core 64-bit Cortex-A57 + 256-core Maxwell GPU), 4GB 64-bit LPDDR4, and 16GB eMMC.
    • Jetson TX2: carrier-board + compute module featuring Tegra X2 SOC (quad-core 64-bit Cortex-A57 + dual-core NVIDIA Denver2 CPU + 256-core Pascal GPU), 8GB 128-bit LPPDR4, 32GB eMMC.
    • Jetson Nano: carrier-board + compute module featuring Tegra X1 SOC (quad-core 64-bit Cortex-A57 + 128-core Maxwell GPU), 4GB 64-bit LPDDR4, 4K video encoder/decoder.
    • Jetson AGX Xavier: carrier-board + compute module featuring Xavier SOC (octal-core 64-bit ARMv8.2 + 512-core Volta GPU with Tensor Cores + dual DLAs), 16GB 256-bit LPDDR4x, 32GB eMMC.

    NVIDIA Jetson Modules

    FeaturesJetson NanoJetson TX1Jetson TX2 seriesJetson AGX Xavier series
     
    Jetson-Nano-Compute-Module-400px.png
    NVIDIA Jetson TX1 module.jpg
    NVIDIA JTX2 Module 400px.png
    Xavier-module-topdown-alpha-300px.png
    CPU ARM Cortex-A57 (quad-core) @ 1.43GHz ARM Cortex-A57 (quad-core) @ 1.73GHz ARM Cortex-A57 (quad-core) @ 2GHz +

    NVIDIA Denver2 (dual-core) @ 2GHz

    NVIDIA Carmel ARMv8.2 (octal-core) @ 2.26GHz

    (4x2MB L2 + 4MB L3)

    GPU 128-core NVIDIA Maxwell @ 921MHz 256-core NVIDIA Maxwell @ 998MHz 256-core NVIDIA Pascal @ 1300MHz 512-core Volta @ 1377 MHz + 64 Tensor Cores
    DL NVIDIA GPU support (CUDA, cuDNN, TensorRT) dual NVIDIA Deep Learning Accelerators
    Memory 4GB 64-bit LPDDR4 @ 1600MHz | 25.6 GB/s 8GB 128-bit LPDDR4 @ 1866Mhz | 58.3 GB/s 16GB 256-bit LPDDR4x @ 2133MHz | 137GB/s
    Storage MicroSD card 16GB eMMC 5.1 32GB eMMC 5.1
    Vision NVIDIA GPU support (CUDA, VisionWorks, OpenCV) 7-way VLIW Vision Accelerator
    Encoder 4Kp30, (2x) 1080p60, (4x) 1080p30 4Kp60, (3x) 4Kp30, (4x) 1080p60, (8x) 1080p30 (4x) 4Kp60, (8x) 4Kp30, (32x) 1080p30
    Decoder 4Kp60, (2x) 4Kp30, (4x) 1080p60, (8x) 1080p30 (2x) 4Kp60, (4x) 4Kp30, (7x) 1080p60 (2x) 8Kp30, (6x) 4Kp60, (12x) 4Kp30
    Camera 12 lanes MIPI CSI-2 | 1.5 Gbps per lane 12 lanes MIPI CSI-2 | 2.5 Gbps per lane 16 lanes MIPI CSI-2 | 6.8125Gbps per lane
    Display 2x HDMI 2.0 / DP 1.2 / eDP 1.2 | 2x MIPI DSI (3x) eDP 1.4 / DP 1.2 / HDMI 2.0 @ 4Kp60
    Wireless M.2 Key-E site on carrier 802.11a/b/g/n/ac 2×2 867Mbps | Bluetooth 4.0 802.11a/b/g/n/ac 2×2 867Mbps | Bluetooth 4.1 M.2 Key-E site on carrier
    Ethernet 10/100/1000 BASE-T Ethernet
    USB (4x) USB 3.0 + Micro-USB 2.0 USB 3.0 + USB 2.0 (3x) USB 3.1 + (4x) USB 2.0
    PCIe PCIe Gen 2 x1/x2/x4 PCIe Gen 2 x5 | 1×4 + 1x1 PCIe Gen 2 x5 | 1×4 + 1×1 or 2×1 + 1×2 PCIe Gen 4 x16 | 1x8 + 1x4 + 1x2 + 2x1
    CAN Not Supported Dual CAN bus controller
    Misc IO UART, SPI, I2C, I2S, GPIOs
    Socket 260-pin edge connector, 45x70mm 400-pin board-to-board connector, 50x87mm 699-pin board-to-board connector, 100x87mm
    Thermals -25°C to 80°C
    Power 5/10W 10W 7.5W 10/15/30W
    Perf 472 GFLOPS 1 TFLOPS 1.3 TFLOPS 32 TeraOPS
  • 相关阅读:
    @Autowired 与@Resource的区别(详细)
    mvn clean compile package install deploy
    Android Studio 之 NDK篇
    cmake处理多源文件目录的方法
    linux CMakeLists.txt 语法
    在 Android Studio 2.2 中愉快地使用 C/C++
    MySql 模糊查询
    C++静态库与动态库详解
    配置Yum源repo文件及搭建本地Yum服务器
    yum命令
  • 原文地址:https://www.cnblogs.com/cloudrivers/p/11871936.html
Copyright © 2011-2022 走看看