zoukankan      html  css  js  c++  java
  • BZOJ1712 : [Usaco2007 China]Summing Sums 加密

    设$s[i]$为进行$i$次加密后所有奶牛数字的和,有$s[i]=(n-1)s[i-1]$。

    设$c[i]$为某头固定的奶牛进行$i$次加密后的数字,

    若$i$为奇数,有:

    [c[i]=((1-n)^0+(1-n)^1+...+(1-n)^{T-1})s-c[0]=frac{(1-(1-n)^T)s}{n}-c[0]]

    若$i$为偶数,有:

    [c[i]=-((1-n)^0+(1-n)^1+...+(1-n)^{T-1})s+c[0]=-frac{(1-(1-n)^T)s}{n}+c[0]]

    预先算出$frac{(1-(1-n)^T)s}{n}$的值后直接$O(n)$计算即可。

    #include<cstdio>
    #define P 98765431
    typedef long long ll;
    int n,T,i,c[50000],y;ll s,x;
    ll pow(ll a,ll b){ll t=1;for(;b;b>>=1,a=a*a%P)if(b&1)t=t*a%P;return t;}
    int main(){
      for(scanf("%d%d",&n,&T),x=(1LL-pow(1-n,T))*pow(n,P-2)%P;i<n;i++)scanf("%d",&c[i]),s=(s+c[i])%P;
      for(x=x*s%P,i=0;i<n;i++)y=((x-c[i])%P+P)%P,printf("%d
    ",T&1?y:P-y);
      return 0;
    }
    

      

  • 相关阅读:
    第一次作业
    1-10的四则运算
    实验九
    实验五
    实验四
    实验三
    实验二
    实验一
    汇编第一章总结
    实验九
  • 原文地址:https://www.cnblogs.com/clrs97/p/4805977.html
Copyright © 2011-2022 走看看