zoukankan      html  css  js  c++  java
  • 【做题】hdu5514 Frogs——另类容斥

    题意是给出n个m的约数,问[0,m-1]中至少被其中一个约数整除的整数和。(n<=10000,m<=1000000000)

    直接容斥的话,是2^n再拖个log的复杂度,加上当前的数大于m时直接跳出了剪枝,或许会小一点。

    但是有一个很重要的性质:我们容斥中所有计算过贡献的数,都是m的因数。换言之,我们计算贡献的数的个数是及其有限的,故可以计算出所有因数贡献的系数。

    我们给所有因数赋予互不重叠的“贡献”,定义为所有能被其整除但不能被其他大于它的因数整除的数的和。这种贡献是我们用来表示答案的组成的,但是不可以直接计算。

    于是一开始,我们把所有是这n个约数的倍数的贡献设为1。事实上,容斥就体现在这里。我们这里是设为1,而不是加1。即对于一个同时是多个因数的倍数的数,我们只计算一次贡献。

    然而,我们在实际计算中,一个数的贡献在它的所有因数中都计算过了。设因数i的实际系数是ri,初始定义的系数是vi,那么,我们有

    时间复杂度O(√m+n*d(m)+d(m)^2)。(好像非常玄学)

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int N = 10010;
     4 typedef long long ll;
     5 ll ans;
     6 int a[N],n,m,p,fac[N],num[N],cnt,tmp;
     7 int main() {
     8   int t;
     9   scanf("%d",&t);
    10   for (int ca = 1 ; ca <= t ; ++ ca) {
    11     memset(num,0,sizeof num);
    12     scanf("%d%d",&n,&m);
    13     cnt = 0;
    14     ans = 0;
    15     for (int i = 1 ; i * i <= m ; ++ i) if (m%i == 0) {
    16       fac[++ cnt] = i;
    17       if (i * i != m) fac[++ cnt] = m/i;
    18     }
    19     sort(fac+1,fac+cnt+1);
    20     for (int i = 1 ; i <= n ; ++ i) {
    21       scanf("%d",&a[i]);
    22       a[i] = __gcd(a[i],m);
    23       for (int j = 1 ; j <= cnt ; ++ j)
    24         if (fac[j] % a[i] == 0) num[j] = 1;
    25     }
    26     for (int i = 1 ; i <= cnt ; ++ i) if (num[i]) {
    27       tmp = m / fac[i];
    28       ans += 1ll * tmp * (tmp - 1) / 2 * fac[i] * num[i];
    29       for (int j = i + 1 ; j <= cnt ; ++ j)
    30         if (fac[j] % fac[i] == 0) num[j] -= num[i];
    31     }
    32     printf("Case #%d: %lld
    ",ca,ans);
    33   }
    34   return 0;
    35 }

    小结:在容斥对象数量少的时候,存下其中的每一个贡献的系数是可取的优化方向。

  • 相关阅读:
    机器学习算法及应用领域相关的中国大牛[转]
    Awesome (and Free) Data Science Books[转]
    机器学习算法之旅【翻译】【转】
    const 引用的分析
    c++ 引用的分析
    读取BMP图像size的时候与操作和左移的原因
    java的equal和==问题
    mac10.9下安装Android
    c++设计模式系列----builder模式
    c++设计模式系列----单例模式(Singleton模式
  • 原文地址:https://www.cnblogs.com/cly-none/p/8440394.html
Copyright © 2011-2022 走看看