zoukankan      html  css  js  c++  java
  • 【做题】UVA-12304——平面计算集合六合一

    可真是道恶心题……
    首先翻译一下6个任务:

    1. 给出一个三角形,求它的外界圆。
    2. 给出一个三角形,求它的内接圆。
    3. 给出一个圆和一个点,求过这个点的切线的倾斜角(alpha in [0,180))。(这个点可能在圆内或圆上)
    4. 给出一条切线、圆上一点和圆的半径,求圆心位置。(此问题和后面的问题都可能无解或有多个解)
    5. 给出两条切线和圆的半径,求圆心位置。
    6. 给出两个外切圆和半径,求圆心位置。

    若有多个解,从小到大输出答案。(点排序时以(x)为第一关键字)
    可以发现,上面的问题经过简单的转换后,就是要求我们实现:

    • 求点到直线的距离。
    • 求点在直线上的垂足。
    • 求直线的垂直平分线。
    • 求角的平分线。
    • 求两条直线的交点。
    • 求圆和一条直线的交点。
    • 求两个圆的交点。

    然后,我们写(O(1))个小时就能写出来了(大雾

    #include <bits/stdc++.h>
    using namespace std;
    typedef double db;
    const db eps = 1e-8, INF = 1.0 / 0.0, pi = acos(-1);
    inline int judge(db x) {
      return x > -eps ? x > eps ? 1 : 0 : -1;
    }
    #define NULLP point(INF,INF)
    struct point {
      db x,y;
      point(db x_=0,db y_=0): x(x_), y(y_) {}
      db abs() const {
        return sqrt(x * x + y * y);
      }
      db norm() const {
        return x * x + y * y;
      }
      bool operator < (const point& a) const {
        return judge(x - a.x) != 0 ? judge(x - a.x) < 0 : judge(y - a.y) < 0;
      }
      point operator - () const {
        return point(-x, -y);
      }
      point operator * (const db& a) const {
        return point(x * a, y * a);
      }
      point operator / (const db& a) const {
        return point(x / a, y / a);
      }
      point* operator *= (const db& a) {
        return *this = *this * a, this;
      }
      point* operator /= (const db& a) {
        return *this = *this / a, this;
      }
      point operator + (const point& a) const {
        return point(x + a.x, y + a.y);
      }
      point operator - (const point& a) const {
        return point(x - a.x, y - a.y);
      }
      point* operator += (const point& a) {
        return *this = *this + a, this;
      }
      point* operator -= (const point& a) {
        return *this = *this - a, this;
      }
      bool avail() {
        return (fabs(x) != INF) && (fabs(y) != INF);
      }
    };
    db dot(point a,point b) {
      return a.x * b.x + a.y * b.y;
    }
    db cross(point a,point b) {
      return a.x * b.y - a.y * b.x;
    }
    point unit(point a) {
      db t = a.abs();
      if (judge(t) == 0) return a;
      return a / t;
    }
    struct line {
      point u,v;
      line(point u_=point(),point v_=point()): u(u_) {
        v = unit(v_);
      }
    };
    db dist(point u,line l) {
      return fabs(cross(u - l.u,l.v));
    }
    point foot_point(point u,line l) {
      return l.u + (l.v * dot(u - l.u,l.v));
    }
    point perpen(point a) {
      return point(a.y, -a.x);
    }
    point crossover(line a,line b) {
      if (judge(cross(a.v,b.v)) == 0) return NULLP;
      point f1 = foot_point(b.u,a);
      point f2 = foot_point(f1,b);
      if (judge(dot(f2 - b.u,b.v)) < 0) b.v = -b.v;
      return b.u + b.v * ((f1 - b.u).norm() / (f2 - b.u).abs());
    }
    line perpen_bi(point a,point b) {
      return line((a + b) / 2, perpen(b - a));
    }
    struct angle {
      point o,u,v;
      angle(point o_=point(),point u_=point(),point v_=point()): o(o_) {
        u = unit(u_);
        v = unit(v_);
      }
      line bise() const {
        return line(o,u + v);
      }
    };
    struct circle {
      point o;
      db r;
      circle(point o_=point(),db r_=0): o(o_), r(r_) {}
    };
    pair<point,point> crossover(circle c,line l) {
      point f = foot_point(c.o,l);
      db d = dist(c.o,l);
      if (judge(d - c.r) > 0) return make_pair(NULLP,NULLP);
      if (judge(d - c.r) == 0) return make_pair(f,NULLP);
      db t = sqrt(c.r * c.r - d * d);
      return make_pair(f + (l.v * t), f - (l.v * t));
    }
    pair<point,point> crossover(circle c1,circle c2) {
      if (judge(c1.r - c2.r) < 0) swap(c1,c2);
      db d = (c1.o - c2.o).abs();
      if (judge(d - c1.r - c2.r) > 0) return make_pair(NULLP,NULLP);
      if (judge(c1.r - c2.r - d) > 0) return make_pair(NULLP,NULLP);
      db co = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d * c1.r);
      line l = line(c1.o,c2.o - c1.o);
      point h = l.u + (l.v * c1.r * co);
      line t = line(h,perpen(l.v));
      return crossover(c1,t);
    }
    circle CircumscribedCircle(point a,point b,point c) {
      line l1 = perpen_bi(a,b);
      line l2 = perpen_bi(b,c);
      point o = crossover(l1,l2);
      return circle(o,(o - a).abs());
    }
    circle InscribedCircle(point a,point b,point c) {
      angle a1 = angle(a,b - a,c - a);
      angle a2 = angle(b,a - b,c - b);
      line l1 = a1.bise();
      line l2 = a2.bise();
      point o = crossover(l1,l2);
      return circle(o,dist(o,line(a,b-a)));
    }
    void TangentLineThroughPoint(circle c,point p) {
      db d = (p - c.o).abs();
      if (judge(d - c.r) < 0) return (void) (puts("[]"));
      if (judge(d - c.r) == 0) {
        point t = perpen(p - c.o);
        db ret = atan(t.y  / t.x) / pi * 180;
        if (judge(ret) < 0) ret = ret + 180;
        return (void) (printf("[%.6lf]
    ",ret));
      }
      db r = sqrt(d * d - c.r * c.r);
      pair<point,point> tmp = crossover(circle(p,r),c);
      point t;
      db ret1, ret2;
      t = tmp.first - p;
      ret1 = atan(t.y / t.x) / pi * 180;
      if (judge(ret1) < 0) ret1 += 180;
      t = tmp.second - p;
      ret2 = atan(t.y / t.x) / pi * 180;
      if (judge(ret2) < 0) ret2 += 180;
      if (judge(ret1 - ret2) > 0) swap(ret1,ret2);
      printf("[%.6lf,%.6lf]
    ",ret1,ret2);
    }
    void output(vector<point>& ret) {
      sort(ret.begin(),ret.end());
      if (ret.size() == 0) return (void) (puts("[]"));
      printf("[(%.6lf,%.6lf)",ret[0].x,ret[0].y);
      for (int i = 1 ; i < (int)ret.size() ; ++ i)
        printf(",(%.6lf,%.6lf)",ret[i].x,ret[i].y);
      puts("]");
    }
    void CircleThroughAPointAndTangentToALineWithRadius(point p,line l,db r) {
      static vector<point> ret;
      ret.clear();
      point t = perpen(l.v);
      line l1 = line(l.u + (t * r),l.v);
      line l2 = line(l.u - (t * r),l.v);
      circle c = circle(p,r);
      pair<point,point> tmp;
      tmp = crossover(c,l1);
      if (tmp.first.avail()) ret.push_back(tmp.first);
      if (tmp.second.avail()) ret.push_back(tmp.second);
      tmp = crossover(c,l2);
      if (tmp.first.avail()) ret.push_back(tmp.first);
      if (tmp.second.avail()) ret.push_back(tmp.second);
      output(ret);
    }
    void CircleTangentToTwoLinesWithRadius(line a,line b,db r) {
      static vector<point> ret;
      ret.clear();
      point t;
      t = perpen(a.v);
      line a1 = line(a.u + (t * r),a.v);
      line a2 = line(a.u - (t * r),a.v);
      t = perpen(b.v);
      line b1 = line(b.u + (t * r),b.v);
      line b2 = line(b.u - (t * r),b.v);
      t = crossover(a1,b1);
      if (t.avail()) ret.push_back(t);
      t = crossover(a1,b2);
      if (t.avail()) ret.push_back(t);
      t = crossover(a2,b1);
      if (t.avail()) ret.push_back(t);
      t = crossover(a2,b2);
      if (t.avail()) ret.push_back(t);
      output(ret);
    }
    void CircleTangentToTwoDisjointCirclesWithRadius(circle c1,circle c2,db r) {
      static vector<point> ret;
      ret.clear();
      c1.r += r;
      c2.r += r;
      pair<point,point> tmp;
      tmp = crossover(c1,c2);
      if (tmp.first.avail()) ret.push_back(tmp.first);
      if (tmp.second.avail()) ret.push_back(tmp.second);
      output(ret);
    }
    int main() {
      string tmp;
      point a,b,c,d;
      circle cir;
      db t,t1,t2;
      while (cin >> tmp) {
        if (tmp == "CircumscribedCircle") {
          scanf("%lf%lf%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y);
          cir = CircumscribedCircle(a,b,c);
          printf("(%.6lf,%.6lf,%.6lf)
    ",cir.o.x,cir.o.y,cir.r);
        }
        if (tmp == "InscribedCircle") {
          scanf("%lf%lf%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y);
          cir = InscribedCircle(a,b,c);
          printf("(%.6lf,%.6lf,%.6lf)
    ",cir.o.x,cir.o.y,cir.r);
        }
        if (tmp == "TangentLineThroughPoint") {
          scanf("%lf%lf%lf%lf%lf",&cir.o.x,&cir.o.y,&cir.r,&a.x,&a.y);
          TangentLineThroughPoint(cir,a);
        }
        if (tmp == "CircleThroughAPointAndTangentToALineWithRadius") {
          scanf("%lf%lf%lf%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y,&t);
          CircleThroughAPointAndTangentToALineWithRadius(a,line(b,c - b),t);
        }
        if (tmp == "CircleTangentToTwoLinesWithRadius") {
          scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y,&d.x,&d.y,&t);
          CircleTangentToTwoLinesWithRadius(line(a,b-a),line(c,d-c),t);
        }
        if (tmp == "CircleTangentToTwoDisjointCirclesWithRadius") {
          scanf("%lf%lf%lf%lf%lf%lf%lf",&a.x,&a.y,&t1,&b.x,&b.y,&t2,&t);
          CircleTangentToTwoDisjointCirclesWithRadius(circle(a,t1),circle(b,t2),t);
        }
      }
      return 0;
    }
    

    小结:我写得太久了。敲键盘时还总是有迟疑。
  • 相关阅读:
    Lesson 43-44 Vacation Season is Approaching?
    Lesson 41-42 How would you respond?
    Lesson 37-38 Do you want to be a millionaire?
    Lesson 35-36 What did you forget?
    Lesson 33-34 Dieting
    保送
    陈老师搬书
    水题(原 USACO Mother's Milk)
    最大公约数和最小公倍数问题(luogu 1029)
    最大子矩阵(OJ 1768)
  • 原文地址:https://www.cnblogs.com/cly-none/p/9090774.html
Copyright © 2011-2022 走看看