zoukankan      html  css  js  c++  java
  • HDU Problem 5748 Bellovin 【LIS】

    Bellovin

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 1008    Accepted Submission(s): 452

    Problem Description
    Peter has a sequence a1,a2,...,an and he define a function on the sequence -- F(a1,a2,...,an)=(f1,f2,...,fn), where fi is the length of the longest increasing subsequence ending with ai.

    Peter would like to find another sequence b1,b2,...,bn in such a manner that F(a1,a2,...,an) equals to F(b1,b2,...,bn). Among all the possible sequences consisting of only positive integers, Peter wants the lexicographically smallest one.

    The sequence a1,a2,...,an is lexicographically smaller than sequence b1,b2,...,bn, if there is such number i from 1 to n, that ak=bk for 1k<i and ai<bi.
     
    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

    The first contains an integer n (1n100000) -- the length of the sequence. The second line contains n integers a1,a2,...,an (1ai109).
     
    Output
    For each test case, output n integers b1,b2,...,bn (1bi109) denoting the lexicographically smallest sequence.
     
    Sample Input
    3 1 10 5 5 4 3 2 1 3 1 3 5
     
    Sample Output
    1 1 1 1 1 1 1 2 3
     
    Source
     
    Recommend
    wange2014   |   We have carefully selected several similar problems for you:  5831 5830 5829 5828 5827 

     

    题意:给一个序列An, 让你找出An元素的每个位置的LIS最小的字典序序列Bn。

    An的LIS就是字典序最小的

    #include <bits/stdc++.h>
    using namespace std;
    const int MAXN = 100010;
    const int INF = 1e9;
    int ar[MAXN], g[MAXN], dp[MAXN];
    int main() {
        int t; scanf("%d", &t);
        while (t--) {
            int n; scanf("%d", &n);
            for (int i = 1; i <= n; i++) {
                scanf("%d", &ar[i]); g[i] = INF;
            }
            for (int i = 1; i <= n; i++) {
                int k = lower_bound(g + 1, g + 1 + n, ar[i]) - g;
                dp[i] = k; g[k] = min(g[k], ar[i]);
            }
            for (int i = 1; i <= n; i++) {
                if (i == n) printf("%d
    ", dp[i]);
                else printf("%d ", dp[i]);
            }
        }
        return 0;
    }

     




  • 相关阅读:
    线段树
    5709 01背包
    JavaEE Tutorials (19)
    洛谷 P3385 【模板】负环
    洛谷 P3388 【模板】割点(割顶)
    洛谷 P3387 【模板】缩点
    洛谷 P3386 【模板】二分图匹配
    洛谷 P3371 【模板】单源最短路径
    洛谷 P3370 【模板】字符串哈希
    洛谷 P3366 【模板】最小生成树
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770834.html
Copyright © 2011-2022 走看看