A polynomial linked list is a special type of linked list where every node represents a term in a polynomial expression.
Each node has three attributes:
coefficient
: an integer representing the number multiplier of the term. The coefficient of the term9x4
is9
.power
: an integer representing the exponent. The power of the term9x4
is4
.next
: a pointer to the next node in the list, ornull
if it is the last node of the list.
For example, the polynomial 5x3 + 4x - 7
is represented by the polynomial linked list illustrated below:
The polynomial linked list must be in its standard form: the polynomial must be in strictly descending order by its power
value. Also, terms with a coefficient
of 0
are omitted.
Given two polynomial linked list heads, poly1
and poly2
, add the polynomials together and return the head of the sum of the polynomials.
PolyNode
format:
The input/output format is as a list of n
nodes, where each node is represented as its [coefficient, power]
. For example, the polynomial 5x3 + 4x - 7
would be represented as: [[5,3],[4,1],[-7,0]]
.
Example 1:
Input: poly1 = [[1,1]], poly2 = [[1,0]] Output: [[1,1],[1,0]] Explanation: poly1 = x. poly2 = 1. The sum is x + 1.
Example 2:
Input: poly1 = [[2,2],[4,1],[3,0]], poly2 = [[3,2],[-4,1],[-1,0]] Output: [[5,2],[2,0]] Explanation: poly1 = 2x2 + 4x + 3. poly2 = 3x2 - 4x - 1. The sum is 5x2 + 2. Notice that we omit the "0x" term.
Example 3:
Input: poly1 = [[1,2]], poly2 = [[-1,2]] Output: [] Explanation: The sum is 0. We return an empty list.
Constraints:
0 <= n <= 104
-109 <= PolyNode.coefficient <= 109
PolyNode.coefficient != 0
0 <= PolyNode.power <= 109
PolyNode.power > PolyNode.next.power
两个多项式相加。
题意是给两个以链表表示的多项式,请以链表形式输出他们相加的结果。这道题不难类似21题 merge two linked lists,注意实现细节就行。既然是链表题,我们还是需要一个dummy node放在最前面。对于这两个链表,我们首先需要判断的是他们两人谁的power大,谁大就需要把谁放在前面。例子中没有给出,但是test case里面是存在类似这样的case的。
3x^3 + 2x^2, 3x^2 + 2x^2
power相同的情况下,则把两个node的power相加;但是如果两个node的power相加等于0的话,则说明这一项两边抵消了,则两个链表可以分别移动到下一个节点了。
时间O(n)
空间O(1)
Java实现
1 /** 2 * Definition for polynomial singly-linked list. 3 * class PolyNode { 4 * int coefficient, power; 5 * PolyNode next = null; 6 7 * PolyNode() {} 8 * PolyNode(int x, int y) { this.coefficient = x; this.power = y; } 9 * PolyNode(int x, int y, PolyNode next) { this.coefficient = x; this.power = y; this.next = next; } 10 * } 11 */ 12 13 class Solution { 14 public PolyNode addPoly(PolyNode poly1, PolyNode poly2) { 15 PolyNode ans = new PolyNode(0, 0); 16 PolyNode cur = ans; 17 while (poly1 != null || poly2 != null) { 18 if (poly1 == null) { 19 cur.next = new PolyNode(poly2.coefficient, poly2.power); 20 poly2 = poly2.next; 21 } else if (poly2 == null) { 22 cur.next = new PolyNode(poly1.coefficient, poly1.power); 23 poly1 = poly1.next; 24 } else { 25 if (poly1.power > poly2.power) { 26 cur.next = new PolyNode(poly1.coefficient, poly1.power); 27 poly1 = poly1.next; 28 } else if (poly1.power < poly2.power) { 29 cur.next = new PolyNode(poly2.coefficient, poly2.power); 30 poly2 = poly2.next; 31 } else { 32 int coeffi = poly1.coefficient + poly2.coefficient; 33 if (coeffi == 0) { 34 poly1 = poly1.next; 35 poly2 = poly2.next; 36 continue; 37 } else { 38 cur.next = new PolyNode(coeffi, poly1.power); 39 poly1 = poly1.next; 40 poly2 = poly2.next; 41 } 42 } 43 } 44 cur = cur.next; 45 } 46 return ans.next; 47 } 48 }
相关题目