zoukankan      html  css  js  c++  java
  • 卷积神经网络---padding、 pool、 Activation layer

    #coding:utf-8
    import tensorflow as tf
    tf.reset_default_graph()
    image = tf.random_normal([1, 112, 96, 3])
    in_channels = 3
    out_channels = 32
    kernel_size = 5
    conv_weight = tf.Variable(tf.truncated_normal([kernel_size, kernel_size, in_channels, out_channels], stddev=0.1,
                                                  dtype=tf.float32))
    
    print 'image shape', image.get_shape()
    print 'conv weight shape', conv_weight.get_shape()
    bias = tf.Variable(tf.zeros([out_channels], dtype=tf.float32))
    conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='SAME')
    conv = tf.nn.bias_add(conv, bias)
    print 'conv output shape with SAME padded', conv.get_shape()
    
    conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='VALID')
    conv = tf.nn.bias_add(conv, bias)
    print 'conv output shape with VALID padded', conv.get_shape()
    
    
    '''
    两种padding方式的不同
    SAME 简而言之就是丢弃,像素不够的时候对那部分不进行卷积,输出图像的宽高计算公式如下(向上取整,进1):
    HEIGHT = ceil(float(in_height)/float(strides[1]))
    WIDTH = ceil(float(in_width)/float(strides[2]))
    
    VALID 简而言之就是补全,像素不够的时候补0,输出图像的宽高计算公式如下
    HEIGHT = ceil(float(in_height - filter_height + 1)/float(strides[1]))
    WIDTH = ceil(float(in_width - filter_width + 1)/float(strides[2]))
    '''

     打印结果

     image shape (1, 112, 96, 3)
     conv weight shape (5, 5, 3, 32)
     conv output shape with SAME padded (1, 38, 32, 32)
     conv output shape with VALID padded (1, 36, 31, 32)

    pool_size = 3
    pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='SAME')
    print pool.get_shape()
    pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='VALID')
    print pool.get_shape()

    结果

    (1, 18, 16, 32)
    (1, 17, 15, 32)

    #激活层
    relu = tf.nn.relu(pool)
    print relu.get_shape()
    l2_regularizer = tf.contrib.layers.l2_regularizer(1.0)
    def prelu(x, name = 'prelu'):
        with tf.variable_scope(name):
            alphas = tf.get_variable('alpha', x.get_shape()[-1], initializer=tf.constant_initializer(0.25), regularizer=l2_regularizer, dtype=
                                     tf.float32)
        pos = tf.nn.relu(x)
        neg = tf.multiply(alphas, (x - abs(x)) * 0.5)
        return pos + neg
    prelu_out = prelu(pool)
    print prelu_out.get_shape()
  • 相关阅读:
    HDOJ1004
    HDOJ1001
    HDOJ1000
    HDOJ1003
    HDOJ1005
    新手如何正确使用CLion之输出hello world
    hihoCoder#1032 : 最长回文子串
    P3805 【模版】manacher算法(manacher)
    P1198 [JSOI2008]最大数(单调栈)
    P1351 联合权值
  • 原文地址:https://www.cnblogs.com/cnugis/p/9309113.html
Copyright © 2011-2022 走看看