zoukankan      html  css  js  c++  java
  • 卷积神经网络---padding、 pool、 Activation layer

    #coding:utf-8
    import tensorflow as tf
    tf.reset_default_graph()
    image = tf.random_normal([1, 112, 96, 3])
    in_channels = 3
    out_channels = 32
    kernel_size = 5
    conv_weight = tf.Variable(tf.truncated_normal([kernel_size, kernel_size, in_channels, out_channels], stddev=0.1,
                                                  dtype=tf.float32))
    
    print 'image shape', image.get_shape()
    print 'conv weight shape', conv_weight.get_shape()
    bias = tf.Variable(tf.zeros([out_channels], dtype=tf.float32))
    conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='SAME')
    conv = tf.nn.bias_add(conv, bias)
    print 'conv output shape with SAME padded', conv.get_shape()
    
    conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='VALID')
    conv = tf.nn.bias_add(conv, bias)
    print 'conv output shape with VALID padded', conv.get_shape()
    
    
    '''
    两种padding方式的不同
    SAME 简而言之就是丢弃,像素不够的时候对那部分不进行卷积,输出图像的宽高计算公式如下(向上取整,进1):
    HEIGHT = ceil(float(in_height)/float(strides[1]))
    WIDTH = ceil(float(in_width)/float(strides[2]))
    
    VALID 简而言之就是补全,像素不够的时候补0,输出图像的宽高计算公式如下
    HEIGHT = ceil(float(in_height - filter_height + 1)/float(strides[1]))
    WIDTH = ceil(float(in_width - filter_width + 1)/float(strides[2]))
    '''

     打印结果

     image shape (1, 112, 96, 3)
     conv weight shape (5, 5, 3, 32)
     conv output shape with SAME padded (1, 38, 32, 32)
     conv output shape with VALID padded (1, 36, 31, 32)

    pool_size = 3
    pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='SAME')
    print pool.get_shape()
    pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='VALID')
    print pool.get_shape()

    结果

    (1, 18, 16, 32)
    (1, 17, 15, 32)

    #激活层
    relu = tf.nn.relu(pool)
    print relu.get_shape()
    l2_regularizer = tf.contrib.layers.l2_regularizer(1.0)
    def prelu(x, name = 'prelu'):
        with tf.variable_scope(name):
            alphas = tf.get_variable('alpha', x.get_shape()[-1], initializer=tf.constant_initializer(0.25), regularizer=l2_regularizer, dtype=
                                     tf.float32)
        pos = tf.nn.relu(x)
        neg = tf.multiply(alphas, (x - abs(x)) * 0.5)
        return pos + neg
    prelu_out = prelu(pool)
    print prelu_out.get_shape()
  • 相关阅读:
    delphi消息发送字符串
    Delphi2007 在Win10 下运行报错 Assertion failure
    python 定时器
    python 直接赋值 深浅拷贝
    python 闭包
    python 对象
    c++ sizeof和strlen
    c++入门笔记(一)
    python实现四种排序逻辑与代码
    webrtc autotest
  • 原文地址:https://www.cnblogs.com/cnugis/p/9309113.html
Copyright © 2011-2022 走看看