zoukankan      html  css  js  c++  java
  • 卷积神经网络---padding、 pool、 Activation layer

    #coding:utf-8
    import tensorflow as tf
    tf.reset_default_graph()
    image = tf.random_normal([1, 112, 96, 3])
    in_channels = 3
    out_channels = 32
    kernel_size = 5
    conv_weight = tf.Variable(tf.truncated_normal([kernel_size, kernel_size, in_channels, out_channels], stddev=0.1,
                                                  dtype=tf.float32))
    
    print 'image shape', image.get_shape()
    print 'conv weight shape', conv_weight.get_shape()
    bias = tf.Variable(tf.zeros([out_channels], dtype=tf.float32))
    conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='SAME')
    conv = tf.nn.bias_add(conv, bias)
    print 'conv output shape with SAME padded', conv.get_shape()
    
    conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='VALID')
    conv = tf.nn.bias_add(conv, bias)
    print 'conv output shape with VALID padded', conv.get_shape()
    
    
    '''
    两种padding方式的不同
    SAME 简而言之就是丢弃,像素不够的时候对那部分不进行卷积,输出图像的宽高计算公式如下(向上取整,进1):
    HEIGHT = ceil(float(in_height)/float(strides[1]))
    WIDTH = ceil(float(in_width)/float(strides[2]))
    
    VALID 简而言之就是补全,像素不够的时候补0,输出图像的宽高计算公式如下
    HEIGHT = ceil(float(in_height - filter_height + 1)/float(strides[1]))
    WIDTH = ceil(float(in_width - filter_width + 1)/float(strides[2]))
    '''

     打印结果

     image shape (1, 112, 96, 3)
     conv weight shape (5, 5, 3, 32)
     conv output shape with SAME padded (1, 38, 32, 32)
     conv output shape with VALID padded (1, 36, 31, 32)

    pool_size = 3
    pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='SAME')
    print pool.get_shape()
    pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='VALID')
    print pool.get_shape()

    结果

    (1, 18, 16, 32)
    (1, 17, 15, 32)

    #激活层
    relu = tf.nn.relu(pool)
    print relu.get_shape()
    l2_regularizer = tf.contrib.layers.l2_regularizer(1.0)
    def prelu(x, name = 'prelu'):
        with tf.variable_scope(name):
            alphas = tf.get_variable('alpha', x.get_shape()[-1], initializer=tf.constant_initializer(0.25), regularizer=l2_regularizer, dtype=
                                     tf.float32)
        pos = tf.nn.relu(x)
        neg = tf.multiply(alphas, (x - abs(x)) * 0.5)
        return pos + neg
    prelu_out = prelu(pool)
    print prelu_out.get_shape()
  • 相关阅读:
    最大连续序列和
    打印有序链表的公共部分
    字符串最长子串大小
    jvm简介
    大浮点数乘法
    java代码的快速排序理解
    从内存分配分析程序初始化和存储
    时间复杂度
    Filter&Listener
    MVC开发模式&EL表达式&JSTL&三层架构开发
  • 原文地址:https://www.cnblogs.com/cnugis/p/9309113.html
Copyright © 2011-2022 走看看