zoukankan      html  css  js  c++  java
  • 卷积神经网络---padding、 pool、 Activation layer

    #coding:utf-8
    import tensorflow as tf
    tf.reset_default_graph()
    image = tf.random_normal([1, 112, 96, 3])
    in_channels = 3
    out_channels = 32
    kernel_size = 5
    conv_weight = tf.Variable(tf.truncated_normal([kernel_size, kernel_size, in_channels, out_channels], stddev=0.1,
                                                  dtype=tf.float32))
    
    print 'image shape', image.get_shape()
    print 'conv weight shape', conv_weight.get_shape()
    bias = tf.Variable(tf.zeros([out_channels], dtype=tf.float32))
    conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='SAME')
    conv = tf.nn.bias_add(conv, bias)
    print 'conv output shape with SAME padded', conv.get_shape()
    
    conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='VALID')
    conv = tf.nn.bias_add(conv, bias)
    print 'conv output shape with VALID padded', conv.get_shape()
    
    
    '''
    两种padding方式的不同
    SAME 简而言之就是丢弃,像素不够的时候对那部分不进行卷积,输出图像的宽高计算公式如下(向上取整,进1):
    HEIGHT = ceil(float(in_height)/float(strides[1]))
    WIDTH = ceil(float(in_width)/float(strides[2]))
    
    VALID 简而言之就是补全,像素不够的时候补0,输出图像的宽高计算公式如下
    HEIGHT = ceil(float(in_height - filter_height + 1)/float(strides[1]))
    WIDTH = ceil(float(in_width - filter_width + 1)/float(strides[2]))
    '''

     打印结果

     image shape (1, 112, 96, 3)
     conv weight shape (5, 5, 3, 32)
     conv output shape with SAME padded (1, 38, 32, 32)
     conv output shape with VALID padded (1, 36, 31, 32)

    pool_size = 3
    pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='SAME')
    print pool.get_shape()
    pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='VALID')
    print pool.get_shape()

    结果

    (1, 18, 16, 32)
    (1, 17, 15, 32)

    #激活层
    relu = tf.nn.relu(pool)
    print relu.get_shape()
    l2_regularizer = tf.contrib.layers.l2_regularizer(1.0)
    def prelu(x, name = 'prelu'):
        with tf.variable_scope(name):
            alphas = tf.get_variable('alpha', x.get_shape()[-1], initializer=tf.constant_initializer(0.25), regularizer=l2_regularizer, dtype=
                                     tf.float32)
        pos = tf.nn.relu(x)
        neg = tf.multiply(alphas, (x - abs(x)) * 0.5)
        return pos + neg
    prelu_out = prelu(pool)
    print prelu_out.get_shape()
  • 相关阅读:
    汉化DevExpress
    《苹果往事》的台式翻译
    说说《程序员》杂志的排版
    关于量化考核绩效
    as3 浅复制 深复制
    斜视角的讨论(转)
    斜角地图原理解释及斜角图形绘制实例细述(转)
    垃圾回收测试
    Flash务实主义(八)——减少数据传输量(转)
    翻译]游戏主循环
  • 原文地址:https://www.cnblogs.com/cnugis/p/9309113.html
Copyright © 2011-2022 走看看