zoukankan      html  css  js  c++  java
  • 卷积神经网络---padding、 pool、 Activation layer

    #coding:utf-8
    import tensorflow as tf
    tf.reset_default_graph()
    image = tf.random_normal([1, 112, 96, 3])
    in_channels = 3
    out_channels = 32
    kernel_size = 5
    conv_weight = tf.Variable(tf.truncated_normal([kernel_size, kernel_size, in_channels, out_channels], stddev=0.1,
                                                  dtype=tf.float32))
    
    print 'image shape', image.get_shape()
    print 'conv weight shape', conv_weight.get_shape()
    bias = tf.Variable(tf.zeros([out_channels], dtype=tf.float32))
    conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='SAME')
    conv = tf.nn.bias_add(conv, bias)
    print 'conv output shape with SAME padded', conv.get_shape()
    
    conv = tf.nn.conv2d(image, conv_weight, strides=[1, 3, 3, 1], padding='VALID')
    conv = tf.nn.bias_add(conv, bias)
    print 'conv output shape with VALID padded', conv.get_shape()
    
    
    '''
    两种padding方式的不同
    SAME 简而言之就是丢弃,像素不够的时候对那部分不进行卷积,输出图像的宽高计算公式如下(向上取整,进1):
    HEIGHT = ceil(float(in_height)/float(strides[1]))
    WIDTH = ceil(float(in_width)/float(strides[2]))
    
    VALID 简而言之就是补全,像素不够的时候补0,输出图像的宽高计算公式如下
    HEIGHT = ceil(float(in_height - filter_height + 1)/float(strides[1]))
    WIDTH = ceil(float(in_width - filter_width + 1)/float(strides[2]))
    '''

     打印结果

     image shape (1, 112, 96, 3)
     conv weight shape (5, 5, 3, 32)
     conv output shape with SAME padded (1, 38, 32, 32)
     conv output shape with VALID padded (1, 36, 31, 32)

    pool_size = 3
    pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='SAME')
    print pool.get_shape()
    pool = tf.nn.max_pool(conv, ksize=[1, pool_size, pool_size, 1], strides=[1, 2, 2, 1], padding='VALID')
    print pool.get_shape()

    结果

    (1, 18, 16, 32)
    (1, 17, 15, 32)

    #激活层
    relu = tf.nn.relu(pool)
    print relu.get_shape()
    l2_regularizer = tf.contrib.layers.l2_regularizer(1.0)
    def prelu(x, name = 'prelu'):
        with tf.variable_scope(name):
            alphas = tf.get_variable('alpha', x.get_shape()[-1], initializer=tf.constant_initializer(0.25), regularizer=l2_regularizer, dtype=
                                     tf.float32)
        pos = tf.nn.relu(x)
        neg = tf.multiply(alphas, (x - abs(x)) * 0.5)
        return pos + neg
    prelu_out = prelu(pool)
    print prelu_out.get_shape()
  • 相关阅读:
    TCP流量控制和拥塞控制
    延迟确认和Nagle算法
    浅谈TCP三次握手和四次挥手
    中介者模式
    代理模式
    装饰者模式
    生成器模式(构建者模式)
    策略模式
    模板方法模式
    抽象工厂模式
  • 原文地址:https://www.cnblogs.com/cnugis/p/9309113.html
Copyright © 2011-2022 走看看