Solution 窗口的星星
题目大意:在平面内有若干个点,每个点有一个权值,问一个给定大小的矩形内的点的权值和的最大值是多少(位于矩形边界上的点不算)
扫描线
分析:
首先不能在边界上比较毒瘤
假设矩形左下角坐标为((x,y)),给定宽(W)高(H)那么右上角坐标就是((x+W,y+H)),我们要使得点不能在边界上,可以等价于把每个点向左下方平移(0.5)个单位,矩形的顶点位于整点上。这个时候相当于左下角((x,y)),右下角((x+W-1,y+H-1))
然后我们来看怎么统计的问题,这个可以用扫描线来做
我们用一棵线段树来维护纵轴
左下角的点加入了就相当于对([y,y+H-1])这一段内所有点(对应在坐标系上就是平行于(x)轴的线)的贡献增加了给定的权值(c),右上角删除同理,离散化后就可以方便的用线段树维护了
我们按照(x)坐标排序即可,注意判断有多个点在一条平行于(y)轴的直线上的情况
有一个坑,(y+W-1)可能爆(int),要开(unsigned;int)
#include <cstdio>
#include <cctype>
#include <algorithm>
using namespace std;
const int maxn = 1e5;
typedef unsigned int uint;
namespace ST{
#define lson (root << 1)
#define rson (root << 1 | 1)
struct Node{
int l,r,val,mark;
}tree[maxn << 2];
inline void build(int a,int b,int root = 1){
tree[root].l = a;
tree[root].r = b;
tree[root].val = tree[root].mark = 0;
if(a == b)return;
int mid = (a + b) >> 1;
build(a,mid,lson);
build(mid + 1,b,rson);
}
inline void pushup(int root){tree[root].val = max(tree[lson].val,tree[rson].val);}
inline void pushdown(int root){
tree[lson].mark += tree[root].mark;
tree[rson].mark += tree[root].mark;
tree[lson].val += tree[root].mark;
tree[rson].val += tree[root].mark;
tree[root].mark = 0;
}
inline void modify(int a,int b,int val,int l,int r,int root = 1){
if(a <= l && b >= r){
tree[root].val += val;
tree[root].mark += val;
return;
}
pushdown(root);
int mid = (l + r) >> 1;
if(a <= mid)modify(a,b,val,l,mid,lson);
if(b >= mid + 1)modify(a,b,val,mid + 1,r,rson);
pushup(root);
}
inline int query(){return tree[1].val;}
}
struct Modi{
uint x,y1,y2;
int c;
bool operator < (const Modi &rhs)const{
return x < rhs.x;
}
}modi[maxn];
int n,W,H,siz,modi_tot;
uint x,y,tmp[maxn];
inline void solve(){
modi_tot = siz = 0;
for(int c,i = 1;i <= n;i++){
scanf("%u %u %d",&x,&y,&c);
modi[++modi_tot] = (Modi){x,y,y + H - 1,c};
modi[++modi_tot] = (Modi){x + W,y,y + H - 1,-c};
tmp[++siz] = y;
tmp[++siz] = y + H - 1;
}
sort(tmp + 1,tmp + 1 + siz);
siz = unique(tmp + 1,tmp + 1 + siz) - tmp - 1;
for(int i = 1;i <= modi_tot;i++)
modi[i].y1 = lower_bound(tmp + 1,tmp + 1 + siz,modi[i].y1) - tmp,modi[i].y2 = lower_bound(tmp + 1,tmp + 1 + siz,modi[i].y2) - tmp;
ST::build(1,siz);
sort(modi + 1,modi + 1 + modi_tot);
int ans = 0;
for(int i = 1;i <= modi_tot;i++){
ST::modify(modi[i].y1,modi[i].y2,modi[i].c,1,siz);
while(i < modi_tot && modi[i].x == modi[i + 1].x){
i++;
ST::modify(modi[i].y1,modi[i].y2,modi[i].c,1,siz);
}
ans = max(ans,ST::query());
}
printf("%d
",ans);
}
int t;
int main(){
scanf("%d",&t);
while(t--)scanf("%d %d %d",&n,&W,&H),solve();
return 0;
}