zoukankan      html  css  js  c++  java
  • 题解 P1502 【窗口的星星】

    题目链接

    Solution 窗口的星星

    题目大意:在平面内有若干个点,每个点有一个权值,问一个给定大小的矩形内的点的权值和的最大值是多少(位于矩形边界上的点不算)

    扫描线


    分析:

    首先不能在边界上比较毒瘤

    假设矩形左下角坐标为((x,y)),给定宽(W)(H)那么右上角坐标就是((x+W,y+H)),我们要使得点不能在边界上,可以等价于把每个点向左下方平移(0.5)个单位,矩形的顶点位于整点上。这个时候相当于左下角((x,y)),右下角((x+W-1,y+H-1))

    然后我们来看怎么统计的问题,这个可以用扫描线来做

    我们用一棵线段树来维护纵轴

    左下角的点加入了就相当于对([y,y+H-1])这一段内所有点(对应在坐标系上就是平行于(x)轴的线)的贡献增加了给定的权值(c),右上角删除同理,离散化后就可以方便的用线段树维护了

    我们按照(x)坐标排序即可,注意判断有多个点在一条平行于(y)轴的直线上的情况

    有一个坑,(y+W-1)可能爆(int),要开(unsigned;int)

    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    using namespace std;
    const int maxn = 1e5;
    typedef unsigned int uint;
    namespace ST{
    	#define lson (root << 1)
    	#define rson (root << 1 | 1)
    	struct Node{
    		int l,r,val,mark;
    	}tree[maxn << 2];
    	inline void build(int a,int b,int root = 1){
    		tree[root].l = a;
    		tree[root].r = b;
    		tree[root].val = tree[root].mark = 0;
    		if(a == b)return;
    		int mid = (a + b) >> 1;
    		build(a,mid,lson);
    		build(mid + 1,b,rson);
    	}
    	inline void pushup(int root){tree[root].val = max(tree[lson].val,tree[rson].val);}
    	inline void pushdown(int root){
    		tree[lson].mark += tree[root].mark;
    		tree[rson].mark += tree[root].mark;
    		tree[lson].val += tree[root].mark;
    		tree[rson].val += tree[root].mark;
    		tree[root].mark = 0;
    	}
    	inline void modify(int a,int b,int val,int l,int r,int root = 1){
    		if(a <= l && b >= r){
    			tree[root].val += val;
    			tree[root].mark += val;
    			return;
    		}
    		pushdown(root);
    		int mid = (l + r) >> 1;
    		if(a <= mid)modify(a,b,val,l,mid,lson);
    		if(b >= mid + 1)modify(a,b,val,mid + 1,r,rson);
    		pushup(root);
    	}
    	inline int query(){return tree[1].val;}
    
    }
    struct Modi{
    	uint x,y1,y2;
    	int c;
    	bool operator < (const Modi &rhs)const{
    		return x < rhs.x;
    	}
    }modi[maxn];
    int n,W,H,siz,modi_tot;
    uint x,y,tmp[maxn];
    inline void solve(){
    	modi_tot = siz = 0;
    	for(int c,i = 1;i <= n;i++){
    		scanf("%u %u %d",&x,&y,&c);
    		modi[++modi_tot] = (Modi){x,y,y + H - 1,c};
    		modi[++modi_tot] = (Modi){x + W,y,y + H - 1,-c};
    		tmp[++siz] = y;
    		tmp[++siz] = y + H - 1;
    	}
    	sort(tmp + 1,tmp + 1 + siz);
    	siz = unique(tmp + 1,tmp + 1 + siz) - tmp - 1;
    	for(int i = 1;i <= modi_tot;i++)
    		modi[i].y1 = lower_bound(tmp + 1,tmp + 1 + siz,modi[i].y1) - tmp,modi[i].y2 = lower_bound(tmp + 1,tmp + 1 + siz,modi[i].y2) - tmp;
    	ST::build(1,siz);
    	sort(modi + 1,modi + 1 + modi_tot);
    	int ans = 0;
    	for(int i = 1;i <= modi_tot;i++){
    		ST::modify(modi[i].y1,modi[i].y2,modi[i].c,1,siz);
    		while(i < modi_tot && modi[i].x == modi[i + 1].x){
    			i++;
    			ST::modify(modi[i].y1,modi[i].y2,modi[i].c,1,siz);
    		}
    		ans = max(ans,ST::query());
    	}
    	printf("%d
    ",ans);
    }
    int t;
    int main(){
    	scanf("%d",&t);
    	while(t--)scanf("%d %d %d",&n,&W,&H),solve();
    	return 0;
    }
    
    
  • 相关阅读:
    当向数据库插入数据的同时返回插入数据的编号(自动生成的编号)
    75条方法改变你的程序人生
    2012下半年计划
    .NET开发中的事务处理大比拼
    JavaScript使用技巧精萃
    生成WebService的代理类操作步骤
    标书陈述总结
    自定义SharePoint 2010 功能区
    做培训、演讲、与回报的区别
    K2 SmartObject 本质
  • 原文地址:https://www.cnblogs.com/colazcy/p/11843510.html
Copyright © 2011-2022 走看看