zoukankan      html  css  js  c++  java
  • 题解 CF438E 【The Child and Binary Tree】

    题目链接

    Solution CF438E The Child and Binary Tree

    题目大意:给定正整数集合 (c)(forall s in[1,m]),求出有多少个有根二叉树,满足每个点的点权都在集合 (c) 中,且所有点的点权之和为 (s)。答案对 (998244353) 取模。

    NTT,多项式开根


    分析:

    我们尝试着搞一个生成函数出来,令 ([x^s]F(x)) 表示得到点权之和为 (s) 的方案数

    转移就是一个树形背包,也就是卷积的形式

    ([x^s]F(x)=sum_{i=1}^{n}[x^{s-c_i}]F^2(x))

    然后这个东西还是一个卷积

    我们设一个 (G)(forall c_i in cquad[x^{c_i}]G(x)=1)

    也就是说 (F-1 equiv F^2G quad (mod;x^m))(因为可能子树为空,所以我们要求 ([x^0]F(x)=1)

    代入求根公式,我们要求的就是这个 (F equiv frac{1 pm sqrt{1-4G}}{2G} quad (mod;x^m))

    但是 (G) 的常数项为 (0),在模 (x^m) 意义下没有乘法逆

    做一点变形

    (Fequivfrac{(1-sqrt{1-4G})(1+sqrt{1-4G})}{2G(1+sqrt{1-4G})}equivfrac{2}{1+sqrt{1-4G}}quad(mod;x^m))

    直接多项式开根,多项式求逆就可以了

    萌新刚学多项式,有问题请多指教 /kel

    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    #include <vector>
    #pragma GCC optmize(2)
    using namespace std;
    typedef long long ll;
    constexpr int maxn = 4e5 + 100,mod = 998244353,G = 3,invG = 332748118,inf = 0x7fffffff;
    constexpr inline int add(const int a,const int b){return (a + b) % mod;}
    constexpr inline int sub(const int a,const int b){return (a - b + mod) % mod;}
    constexpr inline int mul(const int a,const int b){return (1ll * a * b) % mod;}
    inline int qpow(int base,int b){
    	int res = 1;
    	while(b){
    		if(b & 1)res = mul(res,base);
    		base = mul(base,base);
    		b >>= 1;
    	}
    	return res;
    }
    inline int inv(const int x){return qpow(x,mod - 2);}
    struct IO{//-std=c++11,with cstdio and cctype
    	private:
    		static constexpr int ibufsiz = 1 << 20;
    		char ibuf[ibufsiz + 1],*inow = ibuf,*ied = ibuf;
    		static constexpr int obufsiz = 1 << 20;
    		char obuf[obufsiz + 1],*onow = obuf;
    		const char *oed = obuf + obufsiz;
    	public:
    		inline char getchar(){
    			#ifndef ONLINE_JUDGE
    				return ::getchar();
    			#else
    				if(inow == ied){
    					ied = ibuf + sizeof(char) * fread(ibuf,sizeof(char),ibufsiz,stdin);
    					*ied = '';
    					inow = ibuf;
    				}
    				return *inow++;
    			#endif
    		}
    		template<typename T>
    		inline void read(T &x){
    			static bool flg;flg = 0;
    			x = 0;char c = getchar();
    			while(!isdigit(c))flg = c == '-' ? 1 : flg,c = getchar();
    			while(isdigit(c))x = x * 10 + c - '0',c = getchar();
    			if(flg)x = -x;
    		}
    		template <typename T,typename ...Y>
    		inline void read(T &x,Y&... X){read(x);read(X...);}
    		inline int readi(){static int res;read(res);return res;}
    		inline long long readll(){static long long res;read(res);return res;}
    		
    		inline void flush(){
    			fwrite(obuf,sizeof(char),onow - obuf,stdout);
    			fflush(stdout);
    			onow = obuf;
    		}
    		inline void putchar(char c){
    			#ifndef ONLINE_JUDGE
    				::putchar(c);
    			#else
    				*onow++ = c;
    				if(onow == oed){
    					fwrite(obuf,sizeof(char),obufsiz,stdout);
    					onow = obuf;
    				}
    			#endif
    		}
    		template <typename T>
    		inline void write(T x,char split = ''){
    			static unsigned char buf[64];
    			if(x < 0)putchar('-'),x = -x;
    			int p = 0;
    			do{
    				buf[++p] = x % 10;
    				x /= 10;
    			}while(x);
    			for(int i = p;i >= 1;i--)putchar(buf[i] + '0');
    			if(split != '')putchar(split);
    		}
    		inline void lf(){putchar('
    ');}
    		~IO(){
    			fwrite(obuf,sizeof(char),onow - obuf,stdout);
    		}
    }io;
    template <typename A,typename B>
    inline void chkmin(A &x,const B &y){if(y < x)x = y;}
    template <typename A,typename B>
    inline void chkmax(A &x,const B &y){if(y > x)x = y;}
    
    int tr[maxn << 1],len = 1;
    struct poly : std::vector<int>{
    	using std::vector<int>::vector;
    	#define f (*this)
    	inline void ntt(const int flg = 1){
    		const int n = size();
    		for(int i = 0;i < n;i++)
    			if(i < tr[i])std::swap(f[i],f[tr[i]]);
    		for(int p = 2;p <= n;p <<= 1){
    			const int unit = qpow(flg == 1 ? G : invG,(mod - 1) / p);
    			const int len = p >> 1;
    			for(int k = 0;k < n;k += p){
    				int now = 1;
    				for(int l = k;l < k + len;l++){
    					const int tt = mul(f[l + len],now);
    					f[l + len] = sub(f[l],tt);
    					f[l] = add(f[l],tt);
    					now = mul(now,unit);
    				}
    			}
    		}
    		if(flg == -1){
    			const int inv = ::inv(n);
    			for(int i = 0;i < n;i++)f[i] = mul(f[i],inv);
    		}
    	}
    	poly operator + (const poly &g)const{
    		poly res;res.resize(size());
    		for(unsigned int i = 0;i < size();i++)res[i] = add(f[i],g[i]);
    		return res;
    	}
    	poly operator * (const poly &g)const{
    		poly res;res.resize(size());
    		for(unsigned int i = 0;i < size();i++)res[i] = mul(f[i],g[i]);
    		return res;
    	}
    	poly operator * (const int g)const{
    		poly res;res.resize(size());
    		for(unsigned int i = 0;i < size();i++)res[i] = mul(f[i],g);
    		return res;
    	}
    	poly operator - (const poly &g)const{
    		poly res;res.resize(size());
    		for(unsigned int i = 0;i < size();i++)res[i] = sub(f[i],g[i]);
    		return res;
    	}
    	inline void print()const{
    		fprintf(stderr,"siz=%d :",(int)size());
    		for(int x : (*this))fprintf(stderr,"%d ",x);
    		fprintf(stderr,"
    ");	
    	}
    	#undef f
    };
    inline poly calc(poly a,poly &&b){//2 * b - a * b ^ 2
    	for(len = 1;len < a.size() + b.size() + b.size() - 2;len <<= 1);
    	for(int i = 0;i < len;i++)
    		tr[i] = (tr[i >> 1] >> 1) | ((i & 1) ? (len >> 1) : 0);
    	a.resize(len);
    	b.resize(len);
    	a.ntt();
    	b.ntt();
    	poly &&res = b * 2 - a * b * b;
    	res.ntt(-1);
    	return res;
    }
    inline poly inv(const poly &x){
    	if(x.size() == 1)return poly{inv(x[0])};
    	poly tmp(x);
    	tmp.resize((x.size() + 1) >> 1);
    	tmp = calc(x,inv(tmp));
    	tmp.resize(x.size());
    	return tmp;
    }
    inline poly sqrt(const poly &x){
    	if(x.size() == 1)return poly{1};
    	poly t(x);t.resize((x.size() + 1) >> 1);t = sqrt(t);
    	poly g(x);
    	poly inv = t * 2;
    	inv.resize(x.size());
    	inv = ::inv(inv);
    	for(len = 1;len < t.size() + t.size() + inv.size() - 2;len <<= 1);
    	for(int i = 0;i < len;i++)
    		tr[i] = (tr[i >> 1] >> 1) | ((i & 1) ? (len >> 1) : 0);
    	t.resize(len);g.resize(len);inv.resize(len);
    	t.ntt();g.ntt();inv.ntt();
    	poly res = (t * t + g) * inv;
    	res.ntt(-1);
    	res.resize(x.size());
    	return res;
    }
    int main(){
    	const int n = io.readi(),m = io.readi();
    	poly g;
    	g.resize(1e5 + 1);
    	for(int i = 1;i <= n;i++)g[io.readi()] = 1;
    	g.resize(m + 1);
    
    	for(unsigned int i = 0;i < g.size();i++)g[i] = sub(0,4 * g[i]);
    	g[0] = add(g[0],1);
    	g = sqrt(g);
    	g[0] = add(g[0],1);
    	g.resize(m + 1);
    	g = inv(g);
    	poly f;
    	f.resize(m + 1);
    	f[0] = 2;
    	for(int len = 1;len < g.size() + f.size() - 1;len <<= 1);
    	for(int i = 0;i < len;i++)tr[i] = (tr[i >> 1] >> 1) | ((i & 1) ? (len >> 1) : 0);
    	f.resize(len);g.resize(len);
    	f.ntt();g.ntt();
    	poly ans = f * g;
    	ans.ntt(-1);
    	for(int i = 1;i <= m;i++)io.write(ans[i],'
    ');
    	return 0;
    }
    
  • 相关阅读:
    JDK内置工具使用
    awk 数组
    c++面试题
    C++内存分配
    awk 数字比较
    awk脚本 排序
    awk 读取 shell 变量的方法
    NVelocity系列:Getting Start With NVelocity
    Castle.ActiveRecord分页示例
    NVelocity系列:NVelocity配置详解
  • 原文地址:https://www.cnblogs.com/colazcy/p/14106681.html
Copyright © 2011-2022 走看看