zoukankan      html  css  js  c++  java
  • HDU 3836 Equivalent Sets

    Equivalent Sets

    Time Limit: 4000ms
    Memory Limit: 104857KB
    This problem will be judged on HDU. Original ID: 3836
    64-bit integer IO format: %I64d      Java class name: Main
     
     
    To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
    You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
    Now you want to know the minimum steps needed to get the problem proved.
     

    Input

    The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
    Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
     

    Output

    For each case, output a single integer: the minimum steps needed.
     

    Sample Input

    4 0
    3 2
    1 2
    1 3

    Sample Output

    4
    2
    Hint
    Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.

    Source

     
    解题:本意就是最少添加多少条边,使得全图强连通。tarjan求极大强连通子图后缩点。
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <climits>
     7 #include <vector>
     8 #include <queue>
     9 #include <cstdlib>
    10 #include <string>
    11 #include <set>
    12 #include <stack>
    13 #define LL long long
    14 #define pii pair<int,int>
    15 #define INF 0x3f3f3f3f
    16 using namespace std;
    17 const int maxn = 20100;
    18 int dfn[maxn],low[maxn],belong[maxn];
    19 bool instack[maxn];
    20 vector<int>g[maxn];
    21 stack<int>stk;
    22 int n,m,cnt,scc,in[maxn],out[maxn];
    23 void tarjan(int u){
    24     dfn[u] = low[u] = ++cnt;
    25     stk.push(u);
    26     instack[u] = true;
    27     for(int i = 0; i < g[u].size(); i++){
    28         if(!dfn[g[u][i]]){
    29             tarjan(g[u][i]);
    30             low[u] = min(low[u],low[g[u][i]]);
    31         }else if(instack[g[u][i]]) low[u] = min(low[u],dfn[g[u][i]]);
    32     }
    33     if(dfn[u] == low[u]){
    34         scc++;
    35         int v;
    36         do{
    37             v = stk.top();
    38             instack[v] = false;
    39             belong[v] = scc;
    40             stk.pop();
    41         }while(v != u);
    42     }
    43 }
    44 int main() {
    45     int i,j,u,v,a,b;
    46     while(~scanf("%d %d",&n,&m)){
    47         for(i = 0; i <= n; i++){
    48             dfn[i] = low[i] = belong[i] = 0;
    49             instack[i] = false;
    50             g[i].clear();
    51             in[i] = out[i] = 0;
    52         }
    53         cnt = scc = 0;
    54         while(!stk.empty()) stk.pop();
    55         for(i = 1; i <= m; i++){
    56             scanf("%d %d",&u,&v);
    57             g[u].push_back(v);
    58         }
    59         for(i = 1; i <= n; i++)
    60             if(!dfn[i]) tarjan(i);
    61         for(i = 1; i <= n; i++){
    62             for(j = 0; j < g[i].size(); j++){
    63                 if(belong[i] != belong[g[i][j]]){
    64                     in[belong[g[i][j]]]++;
    65                     out[belong[i]]++;
    66                 }
    67             }
    68         }
    69         for(a = b = 0,i = 1; i <= scc; i++){
    70             if(!in[i]) a++;
    71             if(!out[i]) b++;
    72         }
    73         printf("%d
    ",scc == 1?0:max(a,b));
    74     }
    75     return 0;
    76 }
    View Code
  • 相关阅读:
    《七哥说道》第五章:入职惨做苦力,画饼一望无际
    《七哥说道》第四章:理想在远方,现实在流浪
    《七哥说道》第三章:志远淋雨怒辞职,误入保险黄老萍
    《七哥说道》第二章:初出茅庐之拜师学艺
    (十)redis源码解读
    (三十二)线上调优
    (三)栈
    (一)设计模式之代理模式
    Linux whereis、find和locate命令区别以及应用场景
    使用自定义注解和AOP管理shiro权限
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/3935773.html
Copyright © 2011-2022 走看看