zoukankan      html  css  js  c++  java
  • POJ 3463 Sightseeing

    Sightseeing

    Time Limit: 2000ms
    Memory Limit: 65536KB
    This problem will be judged on PKU. Original ID: 3463
    64-bit integer IO format: %lld      Java class name: Main
     

    Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

    Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

    There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

    For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

    Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

     

    Input

    The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

    • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

    • M lines, each with three integers AB and L, separated by single spaces, with 1 ≤ AB ≤ NA ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

      The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

    • One line with two integers S and F, separated by a single space, with 1 ≤ SF ≤ N and S ≠ F: the starting city and the final city of the route.

      There will be at least one route from S to F.

     

    Output

    For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

     

    Sample Input

    2
    5 8
    1 2 3
    1 3 2
    1 4 5
    2 3 1
    2 5 3
    3 4 2
    3 5 4
    4 5 3
    1 5
    5 6
    2 3 1
    3 2 1
    3 1 10
    4 5 2
    5 2 7
    5 2 7
    4 1

    Sample Output

    3
    2

    Source

    解题:A*居然超时。只好这样搞了。。。。。。。。。

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <cmath>
      5 #include <algorithm>
      6 #include <climits>
      7 #include <vector>
      8 #include <queue>
      9 #include <cstdlib>
     10 #include <string>
     11 #include <set>
     12 #include <stack>
     13 #define LL long long
     14 #define pii pair<int,int>
     15 #define INF 0x3f3f3f3f
     16 using namespace std;
     17 const int maxn = 1010;
     18 struct arc {
     19     int to,w,next;
     20     arc(int x = 0,int y = 0,int z = -1) {
     21         to = x;
     22         w = y;
     23         next = z;
     24     }
     25 };
     26 struct node{
     27     int v,w;
     28     bool flag;
     29     node(int x = 0,int y = 0,bool z = false){
     30         v = x;
     31         w = y;
     32         flag = z;
     33     }
     34     bool operator < (const node &x) const{
     35         return w > x.w;
     36     }
     37 };
     38 arc e[20010];
     39 int head[maxn],d[maxn][2],cnt[maxn][2],tot,n,m,s,t;
     40 priority_queue<node>q;
     41 void Dijkstra(){
     42     while(!q.empty()) q.pop();
     43     for(int i = 0; i <= n; i++){
     44         d[i][0] = d[i][1] = INF;
     45         cnt[i][0] = cnt[i][1] = 0;
     46     }
     47     cnt[s][0] = 1;
     48     d[s][0] = 0;
     49     q.push(node(s,0,false));
     50     while(!q.empty()){
     51         node now = q.top();
     52         q.pop();
     53         int v = now.v,w = now.w;
     54         bool flag = now.flag;
     55         if(d[v][flag] != w) continue;
     56         for(int i = head[v]; ~i; i = e[i].next){
     57             int u = e[i].to;
     58             int cost = w + e[i].w;
     59             if(d[u][0] > cost){
     60                 if(d[u][0] < INF){
     61                     d[u][1] = d[u][0];
     62                     q.push(node(u,d[u][1],true));
     63                 }
     64                 cnt[u][1] = cnt[u][0];
     65                 cnt[u][0] = cnt[v][flag];
     66                 d[u][0] = cost;
     67                 q.push(node(u,d[u][0],false));
     68                 continue;
     69             }
     70             if(d[u][0] == cost){
     71                 cnt[u][0] += cnt[v][flag];
     72                 continue;
     73             }
     74             if(d[u][1] > cost){
     75                 d[u][1] = cost;
     76                 cnt[u][1] = cnt[v][flag];
     77                 q.push(node(u,d[u][1],true));
     78                 continue;
     79             }
     80             if(d[u][1] == cost) cnt[u][1] += cnt[v][flag];
     81         }
     82     }
     83 }
     84 void add(int u,int v,int w) {
     85     e[tot] = arc(v,w,head[u]);
     86     head[u] = tot++;
     87 }
     88 int main(){
     89     int ks,u,v,w;
     90     scanf("%d",&ks);
     91     while(ks--){
     92         memset(head,-1,sizeof(head));
     93         scanf("%d %d",&n,&m);
     94         for(int i = tot = 0; i < m; i++){
     95             scanf("%d %d %d",&u,&v,&w);
     96             add(u,v,w);
     97         }
     98         scanf("%d %d",&s,&t);
     99         Dijkstra();
    100         printf("%d
    ",d[t][0] + 1 == d[t][1]?cnt[t][0]+cnt[t][1]:cnt[t][0]);
    101     }
    102     return 0;
    103 }
    View Code
  • 相关阅读:
    英文文法学习笔记(14)分词
    利用别名简化进入docker容器数据库的操作
    英文文法学习笔记(12)形容词
    小知识:在Exadata平台上使用ExaWatcher收集信息
    小知识:调整OCI实例的时区
    小知识:Docker环境缺少vi命令,如何解决
    小知识:Exadata平台去掉密码输错延迟10分钟登录
    英文文法学习笔记(13)副词
    SpringBoot,SpringMvc 参数校验 用法详解
    java 获取项目根路径、获取桌面路径
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/3985124.html
Copyright © 2011-2022 走看看