zoukankan      html  css  js  c++  java
  • 2015 Multi-University Training Contest 4 hdu 5335 Walk Out

    Walk Out

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 639    Accepted Submission(s): 114


    Problem Description
    In an nm maze, the right-bottom corner is the exit (position (n,m) is the exit). In every position of this maze, there is either a 0 or a 1 written on it.

    An explorer gets lost in this grid. His position now is (1,1), and he wants to go to the exit. Since to arrive at the exit is easy for him, he wants to do something more difficult. At first, he'll write down the number on position (1,1). Every time, he could make a move to one adjacent position (two positions are adjacent if and only if they share an edge). While walking, he will write down the number on the position he's on to the end of his number. When finished, he will get a binary number. Please determine the minimum value of this number in binary system.
     
    Input
    The first line of the input is a single integer T (T=10), indicating the number of testcases. 

    For each testcase, the first line contains two integers n and m (1n,m1000). The i-th line of the next n lines contains one 01 string of length m, which represents i-th row of the maze.
     
    Output
    For each testcase, print the answer in binary system. Please eliminate all the preceding 0 unless the answer itself is 0 (in this case, print 0 instead).
     
    Sample Input
    2
    2 2
    11
    11
    3 3
    001
    111
    101
     
    Sample Output
    111
    101
     
    Author
    XJZX
     
    Source
     
    解题:搜索,先看一直走0,走到最靠近终点的1,然后再从这个1所在半径,斜对角线似的搜索,
     
     1 #include <bits/stdc++.h>
     2 #define pii pair<int,int>
     3 using namespace std;
     4 const int maxn = 1005;
     5 const int dir[4][2] = {1,0,0,1,-1,0,0,-1};
     6 char mp[maxn][maxn];
     7 int n,m,sx,sy;
     8 queue< pii >q;
     9 bool vis[maxn][maxn];
    10 bool isIn(int x,int y) {
    11     return x >= 0 && x < n && y >= 0 && y < m;
    12 }
    13 void bfs(int x,int y) {
    14     while(!q.empty()) q.pop();
    15     q.push(pii(x,y));
    16     vis[x][y] = true;
    17     while(!q.empty()) {
    18         pii now = q.front();
    19         q.pop();
    20         for(int i = 0; i < 4; ++i) {
    21             int nx = now.first + dir[i][0];
    22             int ny = now.second + dir[i][1];
    23             if(!isIn(nx,ny) || vis[nx][ny]) continue;
    24             vis[nx][ny] = true;
    25             if(mp[nx][ny] == '0') q.push(pii(nx,ny));
    26             if(sx + sy < nx + ny){
    27                 sx = nx;
    28                 sy = ny;
    29             }
    30         }
    31     }
    32 }
    33 int main() {
    34     int kase;
    35     scanf("%d",&kase);
    36     while(kase--) {
    37         scanf("%d%d",&n,&m);
    38         for(int i = 0; i < n; ++i) scanf("%s",mp[i]);
    39         sx = sy = 0;
    40         memset(vis,false,sizeof vis);
    41         vis[0][0] = true;
    42         if(mp[0][0] == '0') bfs(0,0);
    43         if(mp[sx][sy] == '0') puts("0");
    44         else {
    45             bool nowflag = false;
    46             putchar('1');
    47             for(int i = sx + sy; i < n + m - 2; ++i){
    48                 bool flag = false;
    49                 for(int k = 0; k <= i; ++k){
    50                     int x = k;
    51                     int y = i - k;
    52                     if(!isIn(x,y) || !vis[x][y]) continue;
    53                     if(nowflag && mp[x][y] == '1') continue;
    54                     for(int j = 0; j < 2; ++j){
    55                         int nx = x + dir[j][0];
    56                         int ny = y + dir[j][1];
    57                         if(!isIn(nx,ny)) continue;
    58                         vis[nx][ny] = true;
    59                         if(mp[nx][ny] == '0') flag = true;
    60                     }
    61                 }
    62                 nowflag = flag;
    63                 putchar(flag?'0':'1');
    64             }
    65             putchar('
    ');
    66         }
    67     }
    68     return 0;
    69 }
    View Code
  • 相关阅读:
    浅谈HTTPS协议和SSL、TLS之间的区别与关系
    ECC加密算法原理入门介绍
    用实例给新手讲解RSA加密算法
    ECC椭圆曲线详解(有具体实例)
    设置VMware随系统开机自动启动并引导虚拟机操作系统
    Windows自带的端口转发工具netsh使用方法
    JAVA中使用P和Q分量计算N和D进行RSA运算
    VirtualBox虚拟机和主机之间的通信
    centos 系统管理维护指南
    页面找不到js方法的原因,关于EasyUI
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4690662.html
Copyright © 2011-2022 走看看